4 resultados para non-Gaussian process

em Universidade do Minho


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Imaging techniques are the standard method for assessment of fracture healing processes. However, these methods are perhaps not entirely reliable for early detection of complications, the most frequent of these being delayed union and non-union. A prompt diagnosis of such disorders could prevent prolonged patient distress and disability. Efforts should be directed towards the development of new technologies for improving accuracy in diagnosing complications following bone fractures. The variation in the levels of bone turnover markers (BTMs) have been assessed with regard to there ability to predict impaired fracture healing at an early stage, nevertheless the conclusions of some studies are not consensual. In this article the authors have revised the potential of BTMs as early predictors of prognosis in adult patients presenting traumatic bone fractures but who did not suffer from osteopenia or postmenopausal osteoporosis. The available information from the different studies performed in this field was systematized in order to highlight the most promising BTMs for the assessment of fracture healing outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T. versicolor pellets. On the other hand, the study of microbial communities by means of DGGE and phylogenetic analyses led us to identify some microbial interactions and helped us moving to a continuous process. PhAC removal efficiency achieved in the fungal treatment operated in non-sterile continuous mode was 44 % after adjusting the C/N ratio with respect to the previously calculated one for sterile treatments. Fungal and bacterial communities in the continuous bioreactors were monitored as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly robust hydrogel device made from a single biopolymer formulation is reported. Owing to the presence of covalent and non-covalent crosslinks, these engineered systems were able to (i) sustain a compressive strength of ca. 20 MPa, (ii) quickly recover upon unloading, and (iii) encapsulate cells with high viability rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Load-bearing soft tissues such as cartilage, blood vessels and muscles are able to withstand a remarkable compressive stress of several MPa without fracturing. Interestingly, most of these structural tissues are mainly composed of water and in this regard, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, constitute a promising class of materials to repair lesions on these tissues. Although several approaches can be employed to shape the mechanical properties of artificial hydrogels to mimic the ones found on biotissues, critical issues regarding, for instance, their biocompatibility and recoverability after loading are often neglected. Therefore, an innovative hydrogel device made only of chitosan (CHI) was developed for the repair of robust biological tissues. These systems were fabricated through a dual-crosslinking process, comprising a photo- and an ionic-crosslinking step. The obtained CHIbased hydrogels exhibited an outstanding compressive strength of ca. 20 MPa at 95% of strain, which is several orders of magnitude higher than those of the individual components and close to the ones found in native soft tissues. Additionally, both crosslinking processes occur rapidly and under physiological conditions, enabling cellsâ encapsulation as confirmed by high cell survival rates (ca. 80%). Furthermore, in contrast with conventional hydrogels, these networks quickly recover upon unloading and are able to keep their mechanical properties under physiological conditions as result of their non-swell nature.