6 resultados para nitrogen metabolism

em Universidade do Minho


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concept of brewing science is very recent when compared with the history of beer. It began with the microscopic observations of Louis Pasteur and evolved through the last century with improvements in engineering, microbiology, and instrumental analysis. However, the most profound insight into brewing processes only emerged in the past decades through the advances in molecular biology and genetic engineering. These techniques allowed scientists to not only affirm their experiences and past findings, but also to clarify a vast number of links between cellular structures and their role within the metabolic pathways in yeast. This chapter is therefore dedicated to the behavior of the brewing yeast during fermentation. The discussion puts together the recent findings in the core carbon and nitrogen metabolism of the model yeast Saccharomyces cerevisiae and their fermentation performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors would like to thank the financial support from the NovoNordiskFoundation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ternary aluminium oxynitride (AlNxOy) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlNx and AlOy and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlNxOy thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlOy and AlNx systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N2 and/or O2) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical and computational models play an essential role in understanding the cellular metabolism. They are used as platforms to integrate current knowledge on a biological system and to systematically test and predict the effect of manipulations to such systems. The recent advances in genome sequencing techniques have facilitated the reconstruction of genome-scale metabolic networks for a wide variety of organisms from microbes to human cells. These models have been successfully used in multiple biotechnological applications. Despite these advancements, modeling cellular metabolism still presents many challenges. The aim of this Research Topic is not only to expose and consolidate the state-of-the-art in metabolic modeling approaches, but also to push this frontier beyond the current edge through the introduction of innovative solutions. The articles presented in this e-book address some of the main challenges in the field, including the integration of different modeling formalisms, the integration of heterogeneous data sources into metabolic models, explicit representation of other biological processes during phenotype simulation, and standardization efforts in the representation of metabolic models and simulation results.