9 resultados para multiscale entropy
em Universidade do Minho
Resumo:
Thermodynamic stability of black holes, described by the Rényi formula as equilibrium compatible entropy function, is investigated. It is shown that within this approach, asymptotically flat, Schwarzschild black holes can be in stable equilibrium with thermal radiation at a fixed temperature. This implies that the canonical ensemble exists just like in anti-de Sitter space, and nonextensive effects can stabilize the black holes in a very similar way as it is done by the gravitational potential of an anti-de Sitter space. Furthermore, it is also shown that a Hawking–Page-like black hole phase transition occurs at a critical temperature which depends on the q-parameter of the Rényi formula.
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos
Resumo:
The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the R\'enyi relative entropy formula.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
Cartilage tissue is a complex nonlinear, viscoelastic, anisotropic, and multiphasic material with a very low coefficient of friction, which allows to withstand millions of cycles of joint loading over decades of wear. Upon damage, cartilage tissue has a low self-reparative capacity due to the lack of neural connections, vascularization, and a latent pool of stem/chondroprogenitor cells. Therefore, the healing of articular cartilage defects remains a significant clinical challenge, affecting millions of people worldwide. A plethora of biomaterials have been proposed to fabricate devices for cartilage regeneration, assuming a wide range of forms and structures, such as sponges, hydrogels, capsules, fibers, and microparticles. In common, the fabricated devices were designed taking in consideration that to fully achieve the regeneration of functional cartilage it is mandatory a well-orchestrated interplay of biomechanical properties, unique hierarchical structures, extracellular matrix (ECM), and bioactive factors. In fact, the main challenge in cartilage tissue engineering is to design an engineered device able to mimic the highly organized zonal architecture of articular cartilage, specifically its spatiomechanical properties and ECM composition, while inducing chondrogenesis, either by the proliferation of chondrocytes or by stimulating the chondrogenic differentiation of stem/chondro-progenitor cells. In this chapter we present the recent advances in the development of innovative and complex biomaterials that fulfill the required structural key elements for cartilage regeneration. In particular, multiphasic, multiscale, multilayered, and hierarchical strategies composed by single or multiple biomaterials combined in a welldefined structure will be addressed. Those strategies include biomimetic scaffolds mimicking the structure of articular cartilage or engineered scaffolds as models of research to fully understand the biological mechanisms that influence the regeneration of cartilage tissue.
Resumo:
Tese de Doutoramento em Ciências da Educação (Especialidade em Desenvolvimento Curricular)
Resumo:
Large scale distributed data stores rely on optimistic replication to scale and remain highly available in the face of net work partitions. Managing data without coordination results in eventually consistent data stores that allow for concurrent data updates. These systems often use anti-entropy mechanisms (like Merkle Trees) to detect and repair divergent data versions across nodes. However, in practice hash-based data structures are too expensive for large amounts of data and create too many false conflicts. Another aspect of eventual consistency is detecting write conflicts. Logical clocks are often used to track data causality, necessary to detect causally concurrent writes on the same key. However, there is a nonnegligible metadata overhead per key, which also keeps growing with time, proportional with the node churn rate. Another challenge is deleting keys while respecting causality: while the values can be deleted, perkey metadata cannot be permanently removed without coordination. Weintroduceanewcausalitymanagementframeworkforeventuallyconsistentdatastores,thatleveragesnodelogicalclocks(BitmappedVersion Vectors) and a new key logical clock (Dotted Causal Container) to provides advantages on multiple fronts: 1) a new efficient and lightweight anti-entropy mechanism; 2) greatly reduced per-key causality metadata size; 3) accurate key deletes without permanent metadata.
Resumo:
Aims: To evaluate the differences in linear and complex heart rate dynamics in twin pairs according to fetal sex combination [male-female (MF), male-male (MM), and female-female (FF)]. Methods: Fourteen twin pairs (6 MF, 3 MM, and 5 FF) were monitored between 31 and 36.4 weeks of gestation. Twenty-six fetal heart rate (FHR) recordings of both twins were simultaneously acquired and analyzed with a system for computerized analysis of cardiotocograms. Linear and nonlinear FHR indices were calculated. Results: Overall, MM twins presented higher intrapair average in linear indices than the other pairs, whereas FF twins showed higher sympathetic-vagal balance. MF twins exhibited higher intrapair average in entropy indices and MM twins presented lower entropy values than FF twins considering the (automatically selected) threshold rLu. MM twin pairs showed higher intrapair differences in linear heart rate indices than MF and FF twins, whereas FF twins exhibited lower intrapair differences in entropy indices. Conclusions: The results of this exploratory study suggest that twins have sex-specific differences in linear and nonlinear indices of FHR. MM twins expressed signs of a more active autonomic nervous system and MF twins showed the most active complexity control system. These results suggest that fetal sex combination should be taken into consideration when performing detailed evaluation of the FHR in twins.
Resumo:
Versão dos autores para esta publicação.