9 resultados para multiple reaction model
em Universidade do Minho
Resumo:
Dissertação de mestrado em Economia Monetária, Bancária e Financeira
Resumo:
"A workshop within the 19th International Conference on Applications and Theory of Petri Nets - ICATPN’1998"
Resumo:
Accepted Manuscript
Resumo:
The Childhood protection is a subject with high value for the society, but, the Child Abuse cases are difficult to identify. The process from suspicious to accusation is very difficult to achieve. It must configure very strong evidences. Typically, Health Care services deal with these cases from the beginning where there are evidences based on the diagnosis, but they aren’t enough to promote the accusation. Besides that, this subject it’s highly sensitive because there are legal aspects to deal with such as: the patient privacy, paternity issues, medical confidentiality, among others. We propose a Child Abuses critical knowledge monitor system model that addresses this problem. This decision support system is implemented with a multiple scientific domains: to capture of tokens from clinical documents from multiple sources; a topic model approach to identify the topics of the documents; knowledge management through the use of ontologies to support the critical knowledge sensibility concepts and relations such as: symptoms, behaviors, among other evidences in order to match with the topics inferred from the clinical documents and then alert and log when clinical evidences are present. Based on these alerts clinical personnel could analyze the situation and take the appropriate procedures.
Resumo:
The authors propose a mathematical model to minimize the project total cost where there are multiple resources constrained by maximum availability. They assume the resources as renewable and the activities can use any subset of resources requiring any quantity from a limited real interval. The stochastic nature is inferred by means of a stochastic work content defined per resource within an activity and following a known distribution and the total cost is the sum of the resource allocation cost with the tardiness cost or earliness bonus in case the project finishes after or before the due date, respectively. The model was computationally implemented relying upon an interchange of two global optimization metaheuristics – the electromagnetism-like mechanism and the evolutionary strategies. Two experiments were conducted testing the implementation to projects with single and multiple resources, and with or without maximum availability constraints. The set of collected results shows good behavior in general and provide a tool to further assist project manager decision making in the planning phase.
Resumo:
Programa Doutoral em Líderes para as Indústrias Tecnológicas
Resumo:
Type 2 diabetes (T2D) has been suggested to be a risk factor for multiple myeloma (MM), but the relationship between the two traits is still not well understood. The aims of this study were to evaluate whether 58 genome-wide-association-studies (GWAS)-identified common variants for T2D influence the risk of developing MM and to determine whether predictive models built with these variants might help to predict the disease risk. We conducted a case–control study including 1420 MM patients and 1858 controls ascertained through the International Multiple Myeloma (IMMEnSE) consortium. Subjects carrying the KCNQ1rs2237892T allele or the CDKN2A-2Brs2383208G/G, IGF1rs35767T/T and MADDrs7944584T/T genotypes had a significantly increased risk of MM (odds ratio (OR)=1.32–2.13) whereas those carrying the KCNJ11rs5215C, KCNJ11rs5219T and THADArs7578597C alleles or the FTOrs8050136A/A and LTArs1041981C/C genotypes showed a significantly decreased risk of developing the disease (OR=0.76–0.85). Interestingly, a prediction model including those T2D-related variants associated with the risk of MM showed a significantly improved discriminatory ability to predict the disease when compared to a model without genetic information (area under the curve (AUC)=0.645 vs AUC=0.629; P=4.05×10-06). A gender-stratified analysis also revealed a significant gender effect modification for ADAM30rs2641348 and NOTCH2rs10923931 variants (Pinteraction=0.001 and 0.0004, respectively). Men carrying the ADAM30rs2641348C and NOTCH2rs10923931T alleles had a significantly decreased risk of MM whereas an opposite but not significant effect was observed in women (ORM=0.71 and ORM=0.66 vs ORW=1.22 and ORW=1.15, respectively). These results suggest that TD2-related variants may influence the risk of developing MM and their genotyping might help to improve MM risk prediction models.
Resumo:
PhD thesis in Biomedical Engineering
Resumo:
Genome-scale metabolic models are valuable tools in the metabolic engineering process, based on the ability of these models to integrate diverse sources of data to produce global predictions of organism behavior. At the most basic level, these models require only a genome sequence to construct, and once built, they may be used to predict essential genes, culture conditions, pathway utilization, and the modifications required to enhance a desired organism behavior. In this chapter, we address two key challenges associated with the reconstruction of metabolic models: (a) leveraging existing knowledge of microbiology, biochemistry, and available omics data to produce the best possible model; and (b) applying available tools and data to automate the reconstruction process. We consider these challenges as we progress through the model reconstruction process, beginning with genome assembly, and culminating in the integration of constraints to capture the impact of transcriptional regulation. We divide the reconstruction process into ten distinct steps: (1) genome assembly from sequenced reads; (2) automated structural and functional annotation; (3) phylogenetic tree-based curation of genome annotations; (4) assembly and standardization of biochemistry database; (5) genome-scale metabolic reconstruction; (6) generation of core metabolic model; (7) generation of biomass composition reaction; (8) completion of draft metabolic model; (9) curation of metabolic model; and (10) integration of regulatory constraints. Each of these ten steps is documented in detail.