10 resultados para multibody system dynamics

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series title: Computational methods in applied sciences, ISSN1871-3033, vol. 42"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter presents a general view of multibody system concept and definition by describing the main features associated with spatial systems. The mechanical components, which can be modeled as rigid or flexible, are constrained by kinematic pair of different types. Additionally, the bodies can be actuated upon by force elements and external forces due to interaction with environment. This chapter also presents some examples of application of multibody systems that can include automotive vehicles, mechanisms, robots and biomechanical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system’s state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed, and the main results presented and compared to identify differences among the methodologies and procedures adopted in this work. The input conditions to the models correspond to the experimental data capture from an adult male during normal gait. In general, the obtained results in terms of positions do not differ significantly when the different hip joint models are considered. In sharp contrast, the velocity and acceleration plotted vary significantly. The effect of the hip joint modeling approach is clearly measurable and visible in terms of peaks and oscillations of the velocities and accelerations. In general, with the dry hip model, intra-joint force peaks can be observed, which can be associated with the multiple impacts between the femur head and the cup. In turn, when the lubricant is present, the system’s response tends to be smoother due to the damping effects of the synovial fluid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this chapter, the fundamental ingredients related to formulation of the equations of motion for multibody systems are described. In particular, aspects such as degrees of freedom, types of coordinates, basic kinematics joints and types of analysis in multibody systems are briefly characterized. Illustrative examples of application are also presented to better clarify the fundamental issues for spatial rigid multibody systems, which are of crucial importance in the formulation development of mathematical models of mechanical systems, as well as its computational implementation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most popular approaches to path planning and control is the potential field method. This method is particularly attractive because it is suitable for on-line feedback control. In this approach the gradient of a potential field is used to generate the robot's trajectory. Thus, the path is generated by the transient solutions of a dynamical system. On the other hand, in the nonlinear attractor dynamic approach the path is generated by a sequence of attractor solutions. This way the transient solutions of the potential field method are replaced by a sequence of attractor solutions (i.e., asymptotically stable states) of a dynamical system. We discuss at a theoretical level some of the main differences of these two approaches.