6 resultados para mud wedge

em Universidade do Minho


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the force–deflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Timber frame buildings are well known as an efficient seismic resistant structure and they are used worldwide. Moreover, they have been specifically adopted in codes and regulations during the XVIII and XIX centuries in the Mediterranean area. These structures generally consist of exterior masonry walls with timber elements embedded which tie the walls together and internal walls which have a timber frame with masonry infill and act as shearwalls. In order to preserve these structureswhich characterizemany cities in theworld it is important to better understand their behaviour under seismic actions. Furthermore, historic technologies could be used even in modern constructions to build seismic resistant buildings using more natural materials with lesser costs. Generally, different types of infill could be applied to timber frame walls depending on the country, among which brick masonry, rubble masonry, hay and mud. The focus of this paper is to study the seismic behaviour of the walls considering different types of infill, specifically: masonry infill, lath and plaster and timber frame with no infill. Static cyclic tests have been performed on unreinforced timber frame walls in order to study their seismic capacity in terms of strength, stiffness, ductility and energy dissipation. The tests showed how in the unreinforced condition, the infill is able to guarantee a greater stiffness, ductility and ultimate capacity of the wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Structural Analysis of Monuments and Historical Constructions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Structural Analysis of Monuments and Historical Constructions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earth has been a traditional building material to construct houses in Africa. One of the most common techniques is the use of sun dried or kiln fired adobe bricks with mud mortar. Fired bricks are the main cause for deforestation in countries like Malawi. Although this technique is low-cost, the bricks vary largely in shape, strength and durability. This leads to weak houses which suffer considerable damage during floods and seismic events. One solution is the use of dry-stack masonry with stabilized interlocking compressed earth blocks (ICEB). This technology has the potential of substituting the current bricks by a more sustainable kind of block. This study was made in the context of the HiLoTec project, which focuses on houses in rural areas of developing countries. For this study, Malawi was chosen for a case study. This paper presents the experimental results of tests made with dry-stack ICEBs. Soil samples from Malawi were taken and studied. Since the experimental campaign could not be carried out in Malawi, a homogenization process of Portuguese soil was made to produce ICEBs at the University of Minho, Portugal. Then, the compression and tensile strength of the materials was determined via small cylinder samples. Subsequently, the compression and flexural strength of units were determined. Finally, tests to determine the compressive strength of both prisms and masonry wallets and to determine the initial shear strength of the dry interfaces were carried out. This work provides valuable data for low-cost eco-efficient housing