15 resultados para modulus of deformation

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research, five types of polymer repair materials were selected for investigation of the influence of sample shape, deformation rate and test temperature on the mechanical properties determined with an uniaxial tensile test. The results showed the clear effect of measurement conditions on tensile strength, elongation and modulus of elasticity. The highest tensile strength and modulus of elasticity were exhibited by epoxy resin for the filling of concrete cracks, which achieved 1% elongation. The lowest coefficient of dispersion characterized the results of tensile test carried out using dumbbell samples at a deformation rate of 50 mm/min. The effect of temperature varied with the material type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interesting properties of thermoplastics elastomers can be combined with carbon nanotubes (CNT) for the development of large strain piezoresistive composites for sensor applications. Piezoresistive properties of the composites depend on CNT content, with the gauge factor increasing for concentrations around the percolation threshold, mechanical and electrical hysteresis. The SBS copolymer composition (butadiene/styrene ratio) influences the mechanical and electrical hysteresis of composites and, therefore, the piezoresistive response. This work reports on the electrical and mechanical response of CNT/SBS composites with 4%wt nanofiller content, due to the larger electromechanical response. C401 and C540 SBS copolymers with 80% and 60% butadiene content, respectively have been selected. The copolymer with larger amount of soft phase (C401) shows a rubber-like mechanical behavior, with mechanical hysteresis increasing linearly with strain until 100% strain. The copolymer with the larger amount of hard phase (C540) just shows rubber-like behavior for low strains. The piezoresistive sensibility is similar for both composites for low strains, with a GF≈ 5 for 5% strain. The electrical hysteresis shows opposite behavior than the mechanical hysteresis, increasing with strain for both composites, but with higher increase for softer copolymer, C401. The GF increases with increasing strain, but this increase is larger for composites with lower amounts of soft phase due to the distinct initial modulus and deformation of the soft and hard phases of the copolymer. The soft phase shows larger strain under a given stress than the harder phase and the conductive pathway rearrangements in the composites are different for both phases, the harder copolymer (C540) showing higher piezoresistive sensibility, GF≈ 18, for 20% strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclic load triaxial test is a laboratory test that allows studying the mechanical behaviour of unbound granular materials used in base/subbase layers of road pavements. The resilient modulus and permanent strains are required as inputs in structural pavement design. This paper presents some results obtained for recycled materials (crushed concrete aggregate and blended crushed waste aggregate), with a view to promoting their use in pavement structures. Results relating to a reference material (limestone) are also presented, for comparison. All the test results discussed in this paper were obtained in variable cyclic radial pressure (VCP) tests. The tests performed (VCP) aim to study the influence of water content on the resilient modulus of recycled materials, as well as on the resistance to permanent deformation. Using the experimental data as a basis, further modelling work was carried out to establish the stresses developing in base/capping layers in typical Belgian road pavements. These numerical results allow to propose some simplifications of the stress paths applied in the testing procedures and to establish a new test protocol that also considers compaction during construction works. The results of this research work provide an excellent set of findings for the mechanical characterization of unbound base materials through the cyclic triaxial test, and contribute to a better understanding and correct application of recycled materials under geotechnical engineering background

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this work is to evaluate, by non-destructive techniques, seven old Chestnut beams. For that, after the geometric assessment and the detailed visual inspection that allowed to strength grade the beams, a series of non-destructive tests was setup. In a first step, non-destructive bending tests, under the elastic limit, were performed to quantify the modulus of elasticity in bending (MoE) of the seven beams. Then, Resistograph® and Pilodyn® tests were done to assess the superficial decay and to have aclearer idea of the voids dimensions. Then, two beams were tested in bending until failure to evaluate the bending strength. In a second step, end parts were cut from the beams, one per end of the beams, to perform Resistograph®, Pilodyn® and ultrasound tests, to quantify the density of the beams and to extract meso-specimens to be used in tension parallel to the grain tests

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Existing masonry structures are usually associated to a high seismic vulnerability, mainly due to the properties of the materials, weak connections between floors and load-bearing walls, high mass of the masonry walls and flexibility of the floors. For these reasons, the seismic performance of existing masonry structures has received much attention in the last decades. This study presents the parametric analysis taking into account the deviations on features of the gaioleiro buildings - Portuguese building typology. The main objective of the parametric analysis is to compare the seismic performance of the structure as a function of the variations of its properties with respect to the response of a reference model. The parametric analysis was carried out for two types of structural analysis, namely for the non-linear dynamic analysis with time integration and for the pushover analysis with distribution of forces proportional to the inertial forces of the structure. The Young's modulus of the masonry walls, Young's modulus of the timber floors, the compressive and tensile non-linear properties (strength and fracture energy) were the properties considered in both type of analysis. Additionally, in the dynamic analysis, the influences of the vis-cous damping and of the vertical component of the earthquake were evaluated. A pushover analysis proportional to the modal displacement of the first mode in each direction was also carried out. The results shows that the Young's modulus of the masonry walls, the Young's modulus of the timber floors and the compressive non-linear properties are the pa-rameters that most influence the seismic performance of this type of tall and weak existing masonry structures. Furthermore, it is concluded that that the stiffness of the floors influences significantly the strength capacity and the collapse mecha-nism of the numerical model. Thus, a study on the strengthening of the floors was also carried out. The increase of the thickness of the timber floors was the strengthening technique that presented the best seismic performance, in which the reduction of the out-of-plane displacements of the masonry walls is highlighted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polyimide co-polymers have been prepared based on different diamines as co-monomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed and the dielectric complex function, ac conductivity and electric modulus of the co-polymers were investigated as a function of CN group content in the frequency range from 0.1 Hz to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150ºC, the dielectric constant increases with increasing temperature due to increaseing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN groups content present in the samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The authors also acknowledge Centre for Textile Science and Technology (University of Minho) and FIBRENAMICS PLATFORMfor providing required conditions for this research. Sincere thanks are also due to Mr. Pedro Samuel Leite and Mr. Carlos Jesus for their kind help in sample preparation and testing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work aimed to assess the early-age evolution of E-modulus of epoxy adhesives used for Fibre-Reinforced Polymer (FRP) strengthening applications. The study involved adapting an existing technique devised for continuous monitoring of concrete stiffness since casting, called EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) for evaluation of epoxy stiffness. Furthermore, monotonic tensile tests according to ISO standards and cyclic tensile tests were carried out at several ages. A comparison between the obtained results was performed in order to better understand the performance of the several techniques in the assessment of stiffness of epoxy resins. When compared to the other methodologies, the method for calculation of E-modulus recommended by ISO standard led to lower values, since in the considered strain interval, the adhesive had a non-linear stress–strain relationship. The EMM-ARM technique revealed its capability in clearly identifying the hardening kinetics of epoxy adhesives, measuring the material stiffness growth during the entire curing period. At very early ages the values of Young׳s modulus obtained with quasi-static tests were lower than the values collected by EMM-ARM, due to the fact that epoxy resin exhibited a significant visco-elastic behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a methodology based on the Bayesian data fusion techniques applied to non-destructive and destructive tests for the structural assessment of historical constructions. The aim of the methodology is to reduce the uncertainties of the parameter estimation. The Young's modulus of granite stones was chosen as an example for the present paper. The methodology considers several levels of uncertainty since the parameters of interest are considered random variables with random moments. A new concept of Trust Factor was introduced to affect the uncertainty related to each test results, translated by their standard deviation, depending on the higher or lower reliability of each test to predict a certain parameter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The last decade has witnessed an increased research effort on multi-phase magnetoelectric (ME) composites. In this scope, this paper presents the application of novel materials for the development of anisotropic magnetoelectric (ME) sensors based on δ-FeO(OH)/P(VDF-TrFE) composites. The composite is able to precisely determine the amplitude and direction of the magnetic field. A new ME effect is reported in this study, as it emerges from the magnetic rotation of the δ-FeO(OH) nanosheets inside the piezoelectric P(VDF-TrFE) polymer matrix. δ-FeO(OH)/P(VDF-TrFE) composites with 1, 5, 10 and 20 δ-FeO(OH) filler weigh percentage in three δ-FeO(OH) alignment states (random, transversal and longitudinal) have been developed. Results shown that the modulus of the piezoelectric response (10-24 pC.N-1) is stable at least up to three months, the shape and magnetization maximum value (3 emu.g-1) is dependent on δ-FeO(OH) content and the obtained ME voltage coefficient, with a maximum of ≈0.4 mV.cm-1.Oe-1, is dependent on the incident magnetic field direction and intensity. In this way, the produced materials are suitable for innovative anisotropic sensor and actuator applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Ordenamento e Valorização de Recursos Geológicos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large amplitude oscillatory shear (LAOS) coupled with Fourier transform rheology (FTR) was used for the first time to characterize the large deformation behavior of selected bituminous binders at 20 C. Two polymer modified bitumens (PMB) containing recycled EVA and HDPE and two unmodified bitumens were tested with LAOS-FTR. The LAOS-FTR response of all binders was compared at same frequency, at same Deborah number (by tuning the frequency to the relaxation time of each binder) and at same phase shift angle d (by tuning the frequency to the one corresponding to d = 50 in the SAOS response of each sample). In all the approaches, LAOS-FTR results allowed to differentiate between all the nonlinear mechanical characteristics of the tested binders. All binders show LAOS-FTR patterns reminiscent from colloidal dispersions and emulsions. EVA PMB was less prone to strain-induced microstructural changes when compared to HDPE PMB which showed larger values of nonlinear FTR parameters for the range of shear strains tested in LAOS.