4 resultados para metallic tube

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the investigation and diagnosis of damages to historical masonry structures, the state of stress of the masonry is an important characteristic that must be determined with as much accuracy as possible. Flat-jack testing is a traditional method used to determine the state of stress in historical masonry structures. However, when irregular masonry is tested the method can cause damage to the masonry units and the accuracy of the method is reduced. An enhanced technique, called tube-jack testing, is being developed at the University of Minho to reduce the damage caused during testing and improve the accuracy when used on irregular masonry. This method uses multiple cylindrical jacks inserted in a line of holes drilled in the mortar joints of the masonry, avoiding damage to the masonry units. Concurrently with the development of tube-jack testing, the effect of stress state on sonic testing is being studied. Sonic testing is often used to determine locations of voids and damage in masonry. The focus of these studies was to determine if the state of stress is influencing the sonic test results. In this paper the results of tube-jack testing and sonic testing on masonry walls, built for the purpose of this study in the laboratory, loaded in compression is presented. The tube-jack testing is used to estimate the state of stress in the masonry and the sonic test results are evaluated based on the effect of the applied load on the wall. Future testing and study are suggested for continued development of these test methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flexible and low cost energy harvester device based on the magnetoelectric (ME) effect has been designed using Fe64Co17Si7B12 as amorphous magnetostrictive ribbons and PVDF as the piezoelectric element. Sandwich-type laminated composite of 3 cm long has been fabricated by gluing these ribbons to the PVDF with the Devcon 5 minute epoxy. Good power output and power density of 6.4 μW and 1.5 mW/cm3, respectively, have been obtained through a multiplier circuit. All values have been measured at the magnetomechanical resonance of the laminate. The effect of the length of the ME laminate on the power output has been also studied, exhibiting a decay as the length of the ME laminate does. Nevertheless, good performance of such device has been obtained for a 0.5 cm long device, working already at 337 KHz, within the low radio frequency (LRF) range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Companies and researchers involved in developing miniaturized electronic devices face the basic problem of the needed batteries size, finite life of time and environmental pollution caused by their final deposition. The current trends to overcome this situation point towards Energy Harvesting technology. These harvesters (or scavengers) store the energy from sources present in the ambient (as wind, solar, electromagnetic, etc) and are costless for us. Piezoelectric devices are the ones that show a higher power density, and materials as ceramic PZT or polymeric PVDF have already demonstrated their ability to act as such energy harvester elements. Combinations between piezoelectric and electromagnetic mechanism have been also extensively investigated. Nevertheless, the power generated by these combinations is limited under the application of small magnetic fields, reducing the performance of the energy harvester [1]. In the last years the appearance of magnetoelectric (ME) devices, in which the piezoelectric deformation is driven by the magnetostrictive element, enables to extract the energy of very small electromagnetic signals through the generated magnetoelectric voltage at the piezoelectric element. However, very little work has been done testing PVDF polymer as piezoelectric constituent of the ME energy harvester device, and only to be proposed as a possibility of application [2]. Among the advantages of using piezopolymers for vibrational energy harvesting we can remember that they are ductile, resilient to shock, deformable and lightweight. In this work we demonstrate the feasibility of using magnetostrictive Fe-rich magnetic amorphous alloys/piezoelectric PVDF sandwich-type laminated ME devices as energy harvesters. A very simple experimental set-up will show how these laminates can extract energy, in amounts of μW, from an external AC field.