4 resultados para log measuring
em Universidade do Minho
Resumo:
This paper presents the findings of an experimental campaign that was conducted to investigate the seismic behaviour of log houses. A two-storey log house designed by the Portuguese company Rusticasa® was subjected to a series of shaking table tests at LNEC, Lisbon, Portugal. The paper contains the description of the geometry and construction of the house and all the aspects related to the testing procedure, namely the pre-design, the setup, instrumentation and the testing process itself. The shaking table tests were carried out with a scaled spectrum of the Montenegro (1979) earthquake, at increasing levels of PGA, starting from 0.07g, moving on to 0.28g and finally 0.5g. The log house did not suffer any major damage and remained in working condition throughout the entire process. The preliminary analysis of the overall behaviour of the log house is also discussed.
Resumo:
The dearth of knowledge on the load resistance mechanisms of log houses and the need for developing numerical models that are capable of simulating the actual behaviour of these structures has pushed efforts to research the relatively unexplored aspects of log house construction. The aim of the research that is presented in this paper is to build a working model of a log house that will contribute toward understanding the behaviour of these structures under seismic loading. The paper presents the results of a series of shaking table tests conducted on a log house and goes on to develop a numerical model of the tested house. The finite element model has been created in SAP2000 and validated against the experimental results. The modelling assumptions and the difficulties involved in the process have been described and, finally, a discussion on the effects of the variation of different physical and material parameters on the results yielded by the model has been drawn up.
Resumo:
One of the major challenges in the development of an immersive system is handling the delay between the tracking of the user’s head position and the updated projection of a 3D image or auralised sound, also called end-to-end delay. Excessive end-to-end delay can result in the general decrement of the “feeling of presence”, the occurrence of motion sickness and poor performance in perception-action tasks. These latencies must be known in order to provide insights on the technological (hardware/software optimization) or psychophysical (recalibration sessions) strategies to deal with them. Our goal was to develop a new measurement method of end-to-end delay that is both precise and easily replicated. We used a Head and Torso simulator (HATS) as an auditory signal sensor, a fast response photo-sensor to detect a visual stimulus response from a Motion Capture System, and a voltage input trigger as real-time event. The HATS was mounted in a turntable which allowed us to precisely change the 3D sound relative to the head position. When the virtual sound source was at 90º azimuth, the correspondent HRTF would set all the intensity values to zero, at the same time a trigger would register the real-time event of turning the HATS 90º azimuth. Furthermore, with the HATS turned 90º to the left, the motion capture marker visualization would fell exactly in the photo-sensor receptor. This method allowed us to precisely measure the delay from tracking to displaying. Moreover, our results show that the method of tracking, its tracking frequency, and the rendering of the sound reflections are the main predictors of end-to-end delay.
Resumo:
Purpose – The purpose of this paper is to develop a subjective multidimensional measure of early career success during university-to-work transition. Design/methodology/approach – The construct of university-to-work success (UWS) was defined in terms of intrinsic and extrinsic career outcomes, and a three-stage study was conducted to create a new scale. Findings – A preliminary set of items was developed and tested by judges. Results showed the items had good content validity. Factor analyses indicated a four-factor structure and a second-order model with subscales to assess: career insertion and satisfaction, confidence in career future, income and financial independence, and adaptation to work. Third, the authors sought to confirm the hypothesized model examining the comparative fit of the scale and two alternative models. Results showed that fits for both the first- and second-order models were acceptable. Research limitations/implications – The proposed model has sound psychometric qualities, although the validated version of the scale was not able to incorporate all constructs envisaged by the initial theoretical model. Results indicated some direction for further refinement. Practical implications – The scale could be used as a tool for self-assessment or as an outcome measure to assess the efficacy of university-to-work programs in applied settings. Originality/value – This study provides a useful single measure to assess early career success during the university-to-work transition, and might facilitate testing of causal models which could help identify factors relevant for successful transition.