7 resultados para knapsack problem

em Universidade do Minho


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter aims at developing a taxonomic framework to classify the studies on the flexible job shop scheduling problem (FJSP). The FJSP is a generalization of the classical job shop scheduling problem (JSP), which is one of the oldest NP-hard problems. Although various solution methodologies have been developed to obtain good solutions in reasonable time for FSJPs with different objective functions and constraints, no study which systematically reviews the FJSP literature has been encountered. In the proposed taxonomy, the type of study, type of problem, objective, methodology, data characteristics, and benchmarking are the main categories. In order to verify the proposed taxonomy, a variety of papers from the literature are classified. Using this classification, several inferences are drawn and gaps in the FJSP literature are specified. With the proposed taxonomy, the aim is to develop a framework for a broad view of the FJSP literature and construct a basis for future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To solve a health and safety problem on a waste treatment facility, different multicriteria decision methods were used, including the PROV Exponential decision method. Four alternatives and ten attributes were considered. We found a congruent solution, validated by the different methods. The AHP and the PROV Exponential decision method led us to the same options ordering, but the last method reinforced one of the options as being the best performing one, and detached the least performing option. Also, the ELECTRE I method results led to the same ordering which allowed to point the best solution with reasonable confidence. This paper demonstrates the potential of using multicriteria decision methods to support decision making on complex problems such as risk control and accidents prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the R\'enyi relative entropy formula.