5 resultados para intraparticle diffusivity
em Universidade do Minho
Resumo:
Erythrosine B is widely used for coloring in various applications, especially in the food industry, despite its already proved toxicity and carcinogenicity. The agrowaste pumpkin seed hulls were applied as potential adsorbent for the removal of Erythrosine from aqueous solutions. Adsorption mechanism and kinetics were analyzed for design purposes. The seed hulls were characterized by specific techniques before and after dye retention. It was found that the attachment of Erythrosine B molecules on adsorbent surface may be attributed to the interactions between carboxyl and/or carbonyl groups of both dye and agrowaste wall components. A univariate approach followed by a factorial design was applied to study and analyze the experimental results as well as to estimate the combined effects of the process factors on the removal efficiency and dye uptake. Adsorption mechanism may be predominantly due to intraparticle diffusion, dependent on pore size. The four equilibrium models applied fitted the data well; the maximum adsorption capacity for Erythrosine was 16.4 mg/g. The results showed that adsorbent is effective for Erythrosine B removal for a large concentration range in aqueous solutions (5400 mg/L) in batch systems.
Resumo:
The aim of the present study is to explore obsessive-compulsive disorder (OCD)-related abnormalities in white matter connectivity in OCD for a core region associated with inhibitory control [i.e. inferior frontal gyrus (IFG)]. Fifteen patients with OCD (11 men) and 15 healthy controls (nine men) underwent diffusion tensor imaging scanning to study four diffusivity indexes of white matter integrity [fractional anisotropy, mean diffusivity (MD), axial diffusivity and radial diffusivity (RD)]. The results showed that persons with OCD manifested significantly lower fractional anisotropy levels in the bilateral IFG as well as its parcellations in the pars opercularis, pars triangularis, and pars orbitalis. Significantly higher levels of MD, RD were evident for the OCD group in the IFG as a whole as well as in the bilateral subregions of the pars triangularis and pars opercularis (for MD and RD), the right side of the pars orbitalis (for RD), and the left side of the pars triangularis and right side pars opercularis (for axial diffusivity). Overall, the results suggest significant alterations in structural connectivity, probably associated with myelination and axonal abnormalities in the IFG of OCD patients.
Resumo:
In this work, the thermal stability of TiAgx thin films, deposited by magnetron sputtering, was evaluated, envisaging their application in biomedical devices, namely as electrodes for biosignal acquisition. Based on the composition and microstructural characterization, a set of four representative TiAgx thin films was selected in order to infer whether they are thermally stable in terms of functional properties. In order to achieve this purpose, the structural and morphological evolution of the films with annealing temperature was correlated with their electrical, mechanical and thermal properties. Two distinct zones were identified and two samples from each zone were extensively analysed. In the first zone (zone I), Ti was the main component (Ti-rich zone) while in the second, zone II, the Ag content was more significant. The selected samples were annealed in vacuum at four different temperatures up to 500 oC. For the samples produced within zone I, small microstructural changes were observed due to the recrystallization of the Ti structure and grain size increment. Also, no significant changes were observed with annealing temperature regarding the f l ’ functional properties, being thermally stable up to 500 oC. For higher Ag contents (zone II) the energy supplied by thermal treatments was sufficient to activate the crystallization of Ti-Ag intermetallic phases. A strong increase of the grain size of these phases was also reported. The structural and morphological organization proved to be determinant for the physical responses of the TiAgx system. The hardness and Y g’s modulus were significantly improved with the formation of the intermetallic phases. The silver addition and annealing treatments also played an important role in the electrical conductivity of the films, which was once again improved by the formation of Ti-Ag phases. The thermal diffusivity of the films was practically unchanged with the heat-treatment. This set of results shows that this intermetallic-like thin film system has good thermal stability up to high temperatures (as high as 500 oC), which in case of the highest Ag content zone is particularly evident for electrical and mechanical properties, showing an important improvement. Hardness increases about three times, while resistivity values become half of those from the lowest Ag contents zone. These set of characteristics are consistent with the targeted applications, namely in terms of biomedical sensing devices.
Resumo:
Tese de Doutoramento em Psicologia Clínica / Psicologia
Resumo:
Tese de Doutoramento em Engenharia Civil (área de especialização em Engenharia de Estruturas).