47 resultados para interface engineering
em Universidade do Minho
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto
Resumo:
Programa Doutoral em Engenharia Biomédica
Resumo:
The thymus is the central organ responsible for the generation of T lymphocytes (1). Various diseases cause the thymus to produce in- sufficient T cells, which can lead to immune-suppression (2). Since T cells are essential for the protection against pathogens, it is crucial to promote de novo differentiation of T cells on diseased individuals. The available clinical solutions are: 1) one protocol involving the transplant of thymic stroma from unrelated children only applicable for athymic children (3); 2) for patients with severe peripheral T cell depletion and reduced thymic activity, the administration of stimu- lating molecules stimulating the activity of the endogenous thymus (4). A scaffold (CellFoam) was suggested to support thymus regen- eration in vivo (5), although this research was discontinued. Herein, we propose an innovative strategy to generate a bioartificial thymus. We use a polycaprolactone nanofiber mesh (PCL-NFM) seeded and cultured with human thymic epithelial cells (hTECs). The cells were obtained from infant thymus collected during pediatric cardio-tho- racic surgeries. We report new data on the isolation and characterization of those cells and their interaction with PCL-NFM, by expanding hTECs into relevant numbers and by optimizing cell seeding methods.
Resumo:
Musculoskeletal diseases are one of the leading causes of disability worldwide. Tendon injuries are responsible for substantial morbidity, pain and disability. Tissue engineering strategies aim at translating tendon structure into biomimetic materials. The main goal of the present study is to develop microengineered hydrogel fibers through the combination of microfabrication and chemical interactions between oppositely charged polyelectrolytes. For this, methacrylated hyaluronic acid (MeHA) and chondroitin sulfate (MeCS) were combined with chitosan (CHT). Hydrogel fibers were obtained by injecting polymer solutions (either MeHA or MeHA/MeCS and CHT) in separate microchannels that join at a y-junction, with the materials interacting upon contact at the interface. To evaluate cell behavior, human tendon derived cells (hTDCs) were isolated from tendon surplus samples during orthopedic surgeries and seeded on top of the fibers. hTDCs adhered to the surface of the fibers, remaining viable, and were found to be expressing CD44, the receptor for hyaluronic acid. The synthesis of hydrogel fibers crosslinkable through both physical and chemical mechanisms combined with microfabrication technology allows the development of biomimetic structures with parallel fibers being formed towards the replication of tendon tissue architecture.
Resumo:
One of the biggest concerns in the Tissue Engineering field is the correct vascularization of engineered constructs. Strategies involving the use of endothelial cells are promising but adequate cell sourcing and neo-vessels stability are enduring challenges. In this work, we propose the hypoxic pre-conditioning of the stromal vascular fraction (SVF) of human adipose tissue to obtain highly angiogenic cell sheets (CS). For that, SVF was isolated after enzymatic dissociation of adipose tissue and cultured until CS formation in normoxic (pO2=21%) and hypoxic (pO2=5%) conditions for 5 and 8 days, in basal medium. Immunocytochemistry against CD31 and CD146 revealed the presence of highly branched capillary-like structures, which were far more complex for hypoxia. ELISA quantification showed increased VEGF and TIMP-1 secretion in hypoxia for 8 days of culture. In a Matrigel assay, the formation of capillary-like structures by endothelial cells was more prominent when cultured in conditioned medium recovered from the cultures in hypoxia. The same conditioned medium increased the migration of adipose stromal cells in a scratch assay, when compared with the medium from normoxia. Histological analysis after implantation of 8 days normoxic- and hypoxic-conditioned SVF CS in a hindlimb ischemia murine model showed improved formation of neo-blood vessels. Furthermore, Laser Doppler results demonstrated that the blood perfusion of the injured limb after 30 days was enhanced for the hypoxic CS group. Overall, these results suggest that SVF CS created under hypoxia can be used as functional vascularization units for tissue engineering and regenerative medicine.
Resumo:
Cell-based approaches in tissue engineering (TE) have been barely explored for the treatment of tendon and ligament (T/L) tissues, requiring the establishment of a widely available cell source with tenogenic potential. As T/L cells are scarce, stem cells may provide a good alternative. Understanding how resident cells behave in vitro, might be useful for recapitulating the tenogenic potential of stem cells for tendon TE applications. Therefore, we propose to isolate and characterize human T/L-derived cells (hTDCs and hLDCs) and compare their regenerative potential with stem cells from adipose tissue (hASCs) and amniotic fluid (hAFSCs)(1). T/L cells were isolated using different procedures and stem cells isolated as described elsewhere(1). Moreover, T/L cells were stimu- lated into the three mesenchymal lineages, using standard differentia- tion media. Cells were characterized for the typical stem cell markers as well as T/L related markers, namely tenascin-C, collagen I and III, decorin and scleraxis, using different complementary techniques such as real time RT-PCR, immunocytochemistry and flow cytometry. No differences were observed between T/L in gene expression and protein deposition. T/L cells were mostly positive for stem ness markers (CD73/CD90/CD105), and have the potential to differentiate towards osteogenesis, chondrogenesis and adipogenesis, demonstrated by the positive staining for AlizarinRed, SafraninO, ToluidineBlue and OilRed. hASCs and hAFSCs exhibit positive expression of all tenogenic mark- ers, although at lower levels than hTDCs and hLDCs. Nevertheless, stem cells availability is key factor in TE strategies, despite that it’s still required optimization to direct their tenogenic phenotype.
Resumo:
Tendon tissue engineering (TE) requires tailoring scaffolds designs and properties to the anatomical and functional requirements of tendons located in different regions of the body. Cell sourcing is also of utmost importance as tendon cells are scarce. Recently, we have found that it is possible to direct the tenogenic differentiation of Amniotic fluid and Adipose tissue derived stem cells (hAFSCs and hASCs), and also that there are hASCs subpopulations that might be more prone to tenogenic differentiation. Nevertheless, biochemical stimulation may not be enough to develop functional TE substitutes for a tissue that is known to be highly dependent on mechanical loading.
Resumo:
The regeneration of soft biological tissues requires new substitutes that exhibit mechanical properties similar to the native tissue. Herein, thin saloplastic membranes with tunable physical properties are prepared by complexation of chitosan and alginate solutions containing different concentrations of sodium chloride. Polyelectrolyte complexes (PECs) are transferred to flat Petri dishes for compaction into membrane shapes by sedimentation and solvent evaporation. All membranes are resistant to degradation by lysozyme and are stable in solutions with pH values between 1 and 13. Immersing the different membranes in new doping solutions of increasing salt concentrations triggers the typical saloplastic behavior, with a high water absorption and decrease of the rigidity and ultimate tensile strength. The range of such variations is tuned by the sodium chloride amount used in the synthesis: high salt concentrations increase water uptake and tensile moduli, while decreasing the ultimate strength. Cellular assays demonstrate high proliferation rates and viability of L929 fibroblasts seeded onto the most rigid membranes. The results validate the use of saloplastic membranes as soft tissue substitutes for future biomedical applications.
Resumo:
This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.
Resumo:
Solar photovoltaic systems are an increasing option for electricity production, since they produce electrical energy from a clean renewable energy resource, and over the years, as a result of the research, their efficiency has been increasing. For the interface between the dc photovoltaic solar array and the ac electrical grid is necessary the use of an inverter (dc-ac converter), which should be optimized to extract the maximum power from the photovoltaic solar array. In this paper is presented a solution based on a current-source inverter (CSI) using continuous control set model predictive control (CCS-MPC). All the power circuits and respective control systems are described in detail along the paper and were tested and validated performing computer simulations. The paper shows the simulation results and are drawn several conclusions.
Resumo:
This paper presents the proposal of a three phase current source shunt active power filter (CS-SAPF) with photovoltaic grid interface. The proposed system combines the compensation of reactive power and harmonics with the injection of energy from a solar photovoltaic array into the electrical power grid. The proposed equipment presents the advantage of giving good use to the current source inverter, even when the solar photovoltaic array is not producing energy. The paper describes the control system of the CS SAPF, the energy injection control strategy, and the current harmonics and power factor compensation strategy. Simulation results to assess the performance of the proposed system are also presented.
Resumo:
O presente trabalho dedica-se à caracterização do comportamento de modelos de alvenaria reforçada com FRCM (fiber reinforced cementitious matrix) quando sujeitos a ações que atuam no plano da parede. O sistema de reforço, composto por uma camada de argamassa cimentícia reforçada com uma malha de CFRP (carbon fiber reinforced polymer), foi aplicado a modelos de alvenaria de tijolo furado. Considerando a importância da interface entre a camada de reforço e o substrato para a eficiência do sistema de reforço, procedeu-se à caracterização do comportamento mecânico da interface por intermédio de ensaios de corte direto, com os quais foi possível definir as superfícies de cedência e de rotura da interface. Os resultados obtidos permitiram a quantificação dos parâmetros que caracterizam a interface entre o material cerâmico e uma argamassa do tipo PFRM (polypropylene fibre reinforced mortar) quando sujeita a cargas de corte combinadas com cargas normais à interface. Através de expressões analíticas e do critério de rotura de Mohr-Coloumb foi analisada a adequação de um critério baseado numa aproximação linear, aos dados obtidos experimentalmente.
Resumo:
Epoxy adhesives are nowadays being extensively used in Civil Engineering applications, mostly in the scope of the rehabilitation of reinforced concrete (RC) structures. In this context, epoxy adhesives are used to provide adequate stress transference from fibre reinforced polymers (FRP) to the surrounding concrete substrate. Most recently, the possibility of using prestressed FRPs bonded with these epoxy adhesives is also being explored in order to maximize the potentialities of this strengthening approach. In this context, the understanding of the long term behaviour of the involved materials becomes essential. Even when non-prestressed FRPs are used a certain amount of stress is permanently applied on the adhesive interface during the serviceability conditions of the strengthened structure, and the creep of the adhesive may cause a continuous variation in the deformational response of the element. In this context, this paper presents a study aiming to experimentally characterize the tensile creep behaviour of an epoxy-based adhesive currently used in the strengthening of concrete structures with carbon FRP (CFRP) systems. To analytically describe the tensile creep behaviour, the modified Burgers model was fitted to the experimental creep curves, and the obtained results revealed that this model is capable of predicting with very good accuracy the long term behaviour of this material up to a sustained stress level of 60% of the adhesive’s tensile strength.
Resumo:
Eye tracking as an interface to operate a computer is under research for a while and new systems are still being developed nowadays that provide some encouragement to those bound to illnesses that incapacitates them to use any other form of interaction with a computer. Although using computer vision processing and a camera, these systems are usually based on head mount technology being considered a contact type system. This paper describes the implementation of a human-computer interface based on a fully non-contact eye tracking vision system in order to allow people with tetraplegia to interface with a computer. As an assistive technology, a graphical user interface with special features was developed including a virtual keyboard to allow user communication, fast access to pre-stored phrases and multimedia and even internet browsing. This system was developed with the focus on low cost, user friendly functionality and user independency and autonomy.
Resumo:
This paper presents a framework of competences developed for Industrial Engineering and Management that can be used as a tool for curriculum analysis and design, including the teaching and learning processes as well as the alignment of the curriculum with the professional profile. The framework was applied to the Industrial Engineering and Management program at University of Minho (UMinho), Portugal, and it provides an overview of the connection between IEM knowledge areas and the competences defined in its curriculum. The framework of competences was developed through a process of analysis using a combination of methods and sources for data collection. The framework was developed according to four main steps: 1) characterization of IEM knowledge areas; 2) definition of IEM competences; 3) survey; 4) application of the framework at the IEM curriculum. The findings showed that the framework is useful to build an integrated vision of the curriculum. The most visible aspect in the learning outcomes of IEM program is the lack of balance between technical and transversal competences. There was not almost any reference to the transversal competences and it is fundamentally concentrated on Project-Based Learning courses. The framework presented in this paper provides a contribution to the definition of IEM professional profile through a set of competences which need to be explored further. In addition, it may be a relevant tool for IEM curriculum analysis and a contribution for bridging the gap between universities and companies.