3 resultados para incremental learning algorithm

em Universidade do Minho


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Internet of Things (IoT) is a concept that can foster the emergence of innovative applications. In order to minimize parents’s concerns about their children’s safety, this paper presents the design of a smart Internet of Things system for identifying dangerous situations. The system will be based on real time collection and analysis of physiological signals monitored by non-invasive and non-intrusive sensors, Frequency IDentification (RFID) tags and a Global Positioning System (GPS) to determine when a child is in danger. The assumption of a state of danger is made taking into account the validation of a certain number of biometric reactions to some specific situations and according to a self-learning algorithm developed for this architecture. The results of the analysis of data collected and the location of the child will be able in real time to child’s care holders in a web application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set of tasks that range from the re-annotation of the features used on gene expression, to data normalization and batch effect elimination. In this work, a complete methodology for gene expression data integration and application is proposed, which comprehends a transcript-based re-annotation process and several methods for batch effect attenuation. The integrated data will be used to select the best feature set and learning algorithm for a brain tumor classification case study. The integration will consider data from heterogeneous Agilent and Affymetrix platforms, collected from public gene expression databases, such as The Cancer Genome Atlas and Gene Expression Omnibus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forming suitable learning groups is one of the factors that determine the efficiency of collaborative learning activities. However, only a few studies were carried out to address this problem in the mobile learning environments. In this paper, we propose a new approach for an automatic, customized, and dynamic group formation in Mobile Computer Supported Collaborative Learning (MCSCL) contexts. The proposed solution is based on the combination of three types of grouping criteria: learner’s personal characteristics, learner’s behaviours, and context information. The instructors can freely select the type, the number, and the weight of grouping criteria, together with other settings such as the number, the size, and the type of learning groups (homogeneous or heterogeneous). Apart from a grouping mechanism, the proposed approach represents a flexible tool to control each learner, and to manage the learning processes from the beginning to the end of collaborative learning activities. In order to evaluate the quality of the implemented group formation algorithm, we compare its Average Intra-cluster Distance (AID) with the one of a random group formation method. The results show a higher effectiveness of the proposed algorithm in forming homogenous and heterogeneous groups compared to the random method.