2 resultados para increment zones

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, road accidents are a major public health problem, which increase is forecasted if road safety is not treated properly, dying about 1.2 million people every year around the globe. In 2012, Portugal recorded 573 fatalities in road accidents, on site, revealing the largest decreasing of the European Union for 2011, along with Denmark. Beyond the impact caused by fatalities, it was calculated that the economic and social costs of road accidents weighted about 1.17% of the Portuguese gross domestic product in 2010. Visual Analytics allows the combination of data analysis techniques with interactive visualizations, which facilitates the process of knowledge discovery in sets of large and complex data, while the Geovisual Analytics facilitates the exploration of space-time data through maps with different variables and parameters that are under analysis. In Portugal, the identification of road accident accumulation zones, in this work named black spots, has been restricted to annual fixed windows. In this work, it is presented a dynamic approach based on Visual Analytics techniques that is able to identify the displacement of black spots on sliding windows of 12 months. Moreover, with the use of different parameterizations in the formula usually used to detect black spots, it is possible to identify zones that are almost becoming black spots. Through the proposed visualizations, the study and identification of countermeasures to this social and economic problem can gain new grounds and thus the decision- making process is supported and improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the thermal stability of TiAgx thin films, deposited by magnetron sputtering, was evaluated, envisaging their application in biomedical devices, namely as electrodes for biosignal acquisition. Based on the composition and microstructural characterization, a set of four representative TiAgx thin films was selected in order to infer whether they are thermally stable in terms of functional properties. In order to achieve this purpose, the structural and morphological evolution of the films with annealing temperature was correlated with their electrical, mechanical and thermal properties. Two distinct zones were identified and two samples from each zone were extensively analysed. In the first zone (zone I), Ti was the main component (Ti-rich zone) while in the second, zone II, the Ag content was more significant. The selected samples were annealed in vacuum at four different temperatures up to 500 oC. For the samples produced within zone I, small microstructural changes were observed due to the recrystallization of the Ti structure and grain size increment. Also, no significant changes were observed with annealing temperature regarding the f l ’ functional properties, being thermally stable up to 500 oC. For higher Ag contents (zone II) the energy supplied by thermal treatments was sufficient to activate the crystallization of Ti-Ag intermetallic phases. A strong increase of the grain size of these phases was also reported. The structural and morphological organization proved to be determinant for the physical responses of the TiAgx system. The hardness and Y g’s modulus were significantly improved with the formation of the intermetallic phases. The silver addition and annealing treatments also played an important role in the electrical conductivity of the films, which was once again improved by the formation of Ti-Ag phases. The thermal diffusivity of the films was practically unchanged with the heat-treatment. This set of results shows that this intermetallic-like thin film system has good thermal stability up to high temperatures (as high as 500 oC), which in case of the highest Ag content zone is particularly evident for electrical and mechanical properties, showing an important improvement. Hardness increases about three times, while resistivity values become half of those from the lowest Ag contents zone. These set of characteristics are consistent with the targeted applications, namely in terms of biomedical sensing devices.