9 resultados para in situ technique in electrochemistry
em Universidade do Minho
Resumo:
Well-dispersed loads of finely powdered metals, metal oxides, several carbon allotropes or nanoclays are incorporated into highly porous polyamide 6 microcapsules in controllable amounts via an original one-step in situ fabrication technique. It is based on activated anionic polymerization (AAP) of ε-caprolactam in a hydrocarbon solvent performed in the presence of the respective micro- or nanosized loads. The forming microcapsules with typical diameters of 25-50 µm entrap up to 40 wt% of load. Their melt processing produces hybrid thermoplastic composites. Mechanical, electric conductivity and magnetic response measurements show that transforming of in situ loaded microcapsules into composites by melt processing (MP) is a facile and rapid method to fabricate materials with high mechanical resistance and electro-magnetic characteristics sufficient for many industrial applications. This novel concept requires low polymerization temperatures, no functionalization or compatibilization of the loads and it is easy to scale up at industrial production levels.
Resumo:
Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r=0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.
Resumo:
Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300 nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.
Resumo:
The Embedded Through-Section (ETS) technique is a promising technique for the shear strengthening of existing (RC) elements. According to this technique, holes are drilled through the beam section, and bars of steel or FRP material are introduced into these holes and bonded to the concrete with adhesive materials. An experimental program was carried out with RC T-cross section beams strengthened in shear using the ETS steel bars and ETS CFRP rods. The research is focused on the evaluation of the ETS efficiency on beams with different percentage of existing internal transverse reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%). The effectiveness of different ETS strengthening configurations was also investigated. The good bond between the strengthening ETS bars and the surrounding concrete allowed the yield initiation of the ETS steel bars and the attainment of high tensile strains in the ETS CFPR rods, leading to significant increase of shear capacity, whose level was strongly influenced by the inclination of the ETS bars and the percentage of internal transverse reinforcement.
Resumo:
The acoustic emission (AE) technique is used for investigating the interfacial fracture and damage propagation in GFRP-and SRG-strengthened bricks during debonding tests. The bond behavior is investigated through single-lap shear bond tests and the fracture progress during the tests is recorded by means of AE sensors. The fracture progress and active debonding mechanisms are characterized in both specimen types with the aim of AE outputs. Moreover, a clear distinction between the AE outputs of specimens with different failure modes, in both SRG-and GFRP-strengthened specimens, is found which allows characterizing the debonding failure mode based on acoustic emission data.
Resumo:
Archeology and related areas have a special interest on cultural heritage sites since they provide valuable information about past civilizations. However, the ancient buildings present in these sites are commonly found in an advanced state of degradation which difficult the professional/expert analysis. Virtual reconstructions of such buildings aim to provide a digital insight of how these historical places could have been in ancient times. Moreover, the visualization of such models has been explored by some Augmented Reality (AR) systems capable of providing support to experts. Their compelling and appealing environments have also been applied to promote the social and cultural participation of general public. The existing AR solutions regarding this thematic rarely explore the potential of realism, due to the following lacks: the exploration of mixed environments is usually only supported for indoors or outdoors, not both in the same system; the adaptation of the illumination conditions to the reconstructed structures is rarely addressed causing a decrease of credibility. MixAR [1] is a system concerned with those challenges, aiming to provide the visualization of virtual buildings augmented upon real ruins, allowing soft transitions among its interiors and exteriors and using relighting techniques for a faithful interior illumination, while the user freely moves in a given cultural heritage site, carrying a mobile unit. Regarding the focus of this paper, we intend to report the current state of MixAR mobile unit prototype, which allows visualizing virtual buildings – properly aligned with real-world structures – based on user's location, during outdoor navigation. In order to evaluate the prototype performance, a set of tests were made using virtual models with different complexities.
Resumo:
In some regions of Brazil, especially where the water is scarce, drinking water is stored in water storage tanks. This practice gives the consumer the guarantee of available water. The water storage conditions such as the exposure to hot weather when the tanks are on rooftops allow the development of microorganisms and microbial biofilms which can deteriorate the water quality and increase the risk to human health [1,2]. This study describes the filamentous fungi (FF) detected in free water and biofilms in drinking water storage tanks in Recife - Pernambuco, Brazil. Five sampling times in triplicate were performed at two distinct points. Colony-forming units (CFU) of FF fungi were determined with 0.45 µm filtration membranes using peptone glucose rose Bengal agar (PGRBA). From the 30 samples analysed a total of 1136 CFU were obtained. The water biofilms were collected from samplers consisting of polyethylene coupons, previously installed in the reservoirs. These coupons were transferred to PGRBA plates and incubated using with the same conditions described for free FF. For the in situ detection of FF in biofilms the Calcofluor White staining technique was used. This procedure demonstrated FF forming biofilms on the surfaces of the coupons. Brazilian legislation does not define limits for FF in drinking water. However considering the potential risk of fungal contamination, the data obtained in this study will contribute to developing future quantitative and qualitative parameters for the presence of fungi in drinking water distribution systems in Brazil. [1] HageskaL, G, Lima, N, Skaar, I. The study of fungi in drinking water. Mycological Research, 113, 2009, 165-172. [2] Skaar I, Hageskal G. Fungi in Drinking Water. In.: Paterson RRM, Lima N. (Eds.) Molecular Biology of Food and Water Borne Mycotoxigenic and Mycotic Fungi. CRC Press, Taylor & Francis Group, Boca Raton, 2015, 597-606.
Resumo:
In some regions of Brazil, especially where the water is scarce, drinking water is stored in water storage tanks. This practice gives the consumer the guarantee of available water. The water storage conditions such as the exposure to hot weather when the tanks are on rooftops allow the development of microorganisms and microbial biofilms which can deteriorate the water quality and increase the risk to human health [1,2]. This study describes the filamentous fungi (FF) detected in free water and biofilms in drinking water storage tanks in Recife - Pernambuco, Brazil. Five sampling times in triplicate were performed at two distinct points. Colony-forming units (CFU) of FF fungi were determined with 0.45 μm filtration membranes using peptone glucose rose Bengal agar (PGRBA). From the 30 samples analysed a total of 1136 CFU were obtained. The water biofilms were collected from samplers consisting of polyethylene coupons, previously installed in the reservoirs. These coupons were transferred to PGRBA plates and incubated using with the same conditions described for free FF. For the in situ detection of FF in biofilms the Calcofluor White staining technique was used. This procedure demonstrated FF forming biofilms on the surfaces of the coupons. Brazilian legislation does not define limits for FF in drinking water. However considering the potential risk of fungal contamination, the data obtained in this study will contribute to developing future quantitative and qualitative parameters for the presence of fungi in drinking water distribution systems in Brazil.