4 resultados para human in vitro myogenesis
em Universidade do Minho
Resumo:
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage.
Resumo:
Dissertação de mestrado em Bioquímica Aplicada
Resumo:
Cell sheet (CS) engineering, taking advantage of cellular self-matrix organized as in native tissue, has been largely explored, including by us, for different purposes [1â 3]. Herein we propose for the ï¬ rst time, the use of human adipose stem cells (hASCs)-derived CS to create adipose tissue analogues with different levels of maturation. hASCs were cultured on UpCellTM thermo-responsive dishes for 1, 3 and 5 days under basal conditions previously established by us [3]. The inï¬ uence of pre-differentiation time and respective cell number, over CS stability and differentiation was assessed. Mechanically robust CS were only obtained with 5 days pre-differentiation period. Adipogenesis was followed along the culture assessing the variation of expression of mesenchymal (CD73, CD105 but not CD90) and adipogenic (PPARg, FABP4 and LPL) markers by ï¬ ow cytometry, immunocytochemistry and RT-PCR. Increased ratio of differentiated cells was achieved for longer pre-differentiation periods, while maturation degree was modulated by the maintenance medium. Independently of the overall CS differentiation/maturation level, 3D constructs were fabricated by stacking and further culturing 3 CS. Thus, by varying the culture conditions, different 3D adipose tissue-like microenvironments were recreated, enabling future development of new tissue engineering strategies, as well as further study of adipose tissue role in the regeneration of different tissues.
Resumo:
An overview is given of the recent work on in vitro enzymatic phosphorylation of silk fibroin and human hair keratin. Opposing to many chemical "conventional" approaches, enzymatic phosphorylation is in fact a mild reaction and the treatment falls within "green chemistry" approach. Silk and keratin are not phosphorylated in vivo, but in vitro. This enzyme-driven modification is a major technological breakthrough. Harsh chemical chemicals are avoided, and mild conditions make enzymatic phosphorylation a real "green chemistry" approach. The current communication presents a novel approach stating that enzyme phosphorylation may be used as a tool to modify the surface charge of biocompatible materials such as keratin and silk.