19 resultados para genetic algorithms.
em Universidade do Minho
Resumo:
The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the paper. The authors would like to thank Dr. Elaine DeBock for reviewing the manuscript.
Resumo:
This work presents a model and a heuristic to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving problems with one vehicle was presented, and this heuristic provides good results in terms of accuracy and computation time.
Resumo:
This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.
Resumo:
Tese de Doutoramento em Engenharia Industrial e de Sistemas.
Resumo:
Traffic Engineering (TE) approaches are increasingly impor- tant in network management to allow an optimized configuration and resource allocation. In link-state routing, the task of setting appropriate weights to the links is both an important and a challenging optimization task. A number of different approaches has been put forward towards this aim, including the successful use of Evolutionary Algorithms (EAs). In this context, this work addresses the evaluation of three distinct EAs, a single and two multi-objective EAs, in two tasks related to weight setting optimization towards optimal intra-domain routing, knowing the network topology and aggregated traffic demands and seeking to mini- mize network congestion. In both tasks, the optimization considers sce- narios where there is a dynamic alteration in the state of the system, in the first considering changes in the traffic demand matrices and in the latter considering the possibility of link failures. The methods will, thus, need to simultaneously optimize for both conditions, the normal and the altered one, following a preventive TE approach towards robust configurations. Since this can be formulated as a bi-objective function, the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat- urally, being those compared to a single-objective EA. The results show a remarkable behavior of NSGA-II in all proposed tasks scaling well for harder instances, and thus presenting itself as the most promising option for TE in these scenarios.
Resumo:
Immune systems have been used in the last years to inspire approaches for several computational problems. This paper focus on behavioural biometric authentication algorithms’ accuracy enhancement by using them more than once and with different thresholds in order to first simulate the protection provided by the skin and then look for known outside entities, like lymphocytes do. The paper describes the principles that support the application of this approach to Keystroke Dynamics, an authentication biometric technology that decides on the legitimacy of a user based on his typing pattern captured on he enters the username and/or the password and, as a proof of concept, the accuracy levels of one keystroke dynamics algorithm when applied to five legitimate users of a system both in the traditional and in the immune inspired approaches are calculated and the obtained results are compared.
Resumo:
PhD thesis in Bioengineering
Resumo:
Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.
Resumo:
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
Resumo:
Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.
Resumo:
PTX3-based genetic testing for risk of aspergillosis after lung transplant
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
PhD thesis in Biomedical Engineering
Resumo:
Distributed data aggregation is an important task, allowing the de- centralized determination of meaningful global properties, that can then be used to direct the execution of other applications. The resulting val- ues result from the distributed computation of functions like count, sum and average. Some application examples can found to determine the network size, total storage capacity, average load, majorities and many others. In the last decade, many di erent approaches have been pro- posed, with di erent trade-o s in terms of accuracy, reliability, message and time complexity. Due to the considerable amount and variety of ag- gregation algorithms, it can be di cult and time consuming to determine which techniques will be more appropriate to use in speci c settings, jus- tifying the existence of a survey to aid in this task. This work reviews the state of the art on distributed data aggregation algorithms, providing three main contributions. First, it formally de nes the concept of aggrega- tion, characterizing the di erent types of aggregation functions. Second, it succinctly describes the main aggregation techniques, organizing them in a taxonomy. Finally, it provides some guidelines toward the selection and use of the most relevant techniques, summarizing their principal characteristics.