12 resultados para elasticity of substitution
em Universidade do Minho
Resumo:
Understanding the behavior of c omplex composite materials using mixing procedures is fundamental in several industrial processes. For instance, polymer composites are usually manufactured using dispersion of fillers in polymer melt matrices. The success of the filler dispersion depends both on the complex flow patterns generated and on the polymer melt rheological behavior. Consequently, the availability of a numerical tool that allow to model both fluid and particle would be very useful to increase the process insight. Nowadays there ar e computational tools that allow modeling the behavior of filled systems, taking into account both the behavior of the fluid (Computational Rheology) and the particles (Discrete Element Method). One example is the DPMFoam solver of the OpenFOAM ® framework where the averaged volume fraction momentum and mass conservation equations are used to describe the fluid (continuous phase) rheology, and the Newton’s second law of motion is used to compute the particles (discrete phase) movement. In this work the refer red solver is extended to take into account the elasticity of the polymer melts for the continuous phase. The solver capabilities will be illustrated by studying the effect of the fluid rheology on the filler dispersion, taking into account different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to evaluate the relevance of considering the fluid complex rheology for the prediction of the composites morphology
Resumo:
Lithium-ion battery cathodes have been fabricated by screen-printing through the development of CLiFePO4 inks. It is shown that shear thinning polymer solutions in N-methyl-2-pyrrolidone (NMP) with Newtonian viscosity above 0.4 Pa s are the best binders for formulating a cathode paste with satisfactory film forming properties. The paste shows an elasticity of the order of 500 Pa and, after shear yielding, shows an apparent viscosity of the order of 3 Pa s for shear rates corresponding to those used during screen-printing. The screen-printed cathode produced with a thickness of 26 mm shows a homogeneous distribution of the active material, conductive additive and polymer binder. The total resistance and diffusion coefficient of the cathode are 450 V and 2.5 10 16cm2 s 1, respectively. The developed cathodes show an initial discharge capacity of 48.2 mAh g 1 at 5C and a discharge value of 39.8 mAh g 1 after 50 cycles. The capacity retention of 83% represents 23% of the theoretical value (charge and/or discharge process in twenty minutes), demonstrating the good performance of the battery. Thus, the developed C-LiFePO4 based inks allow to fabricate screen-printed cathodes suitable for printed lithium-ion batteries
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
The synthesis and biological evaluation of novel 1-aryl-3-[2-, 3- or 4-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 3, 4 and 5 as VEGFR-2 tyrosine kinase inhibitors, are reported. The 1-aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 4a-4h, with the arylurea in the meta position to the thioether, showed the lowest IC50 values in enzymatic assays (10-206 nM), the most potent compounds 4d-4h (IC50 10-28 nM) bearing hydrophobic groups (Me, F, CF3 and Cl) in the terminal phenyl ring. A convincing rationalization was achieved for the highest potent compounds 4 as type II VEGFR-2 inhibitors, based on the simultaneous presence of: (1) the thioether linker and (2) the arylurea moiety in the meta position. For compounds 4, significant inhibition of Human Umbilical Vein Endothelial Cells (HUVECs) proliferation (BrdU assay), migration (wound-healing assay) and tube formation were observed at low concentrations. These compounds have also shown to increase apoptosis using the TUNEL assay. Immunostaining for total and phosphorylated (active) VEGFR-2 was performed by Western blotting. The phosphorylation of the receptor was significantly inhibited at 1.0 and 2.5 microM for the most promising compounds. Altogether, these findings point to an antiangiogenic effect in HUVECs.
Resumo:
In this research, five types of polymer repair materials were selected for investigation of the influence of sample shape, deformation rate and test temperature on the mechanical properties determined with an uniaxial tensile test. The results showed the clear effect of measurement conditions on tensile strength, elongation and modulus of elasticity. The highest tensile strength and modulus of elasticity were exhibited by epoxy resin for the filling of concrete cracks, which achieved 1% elongation. The lowest coefficient of dispersion characterized the results of tensile test carried out using dumbbell samples at a deformation rate of 50 mm/min. The effect of temperature varied with the material type.
Resumo:
The main objective of this work is to evaluate, by non-destructive techniques, seven old Chestnut beams. For that, after the geometric assessment and the detailed visual inspection that allowed to strength grade the beams, a series of non-destructive tests was setup. In a first step, non-destructive bending tests, under the elastic limit, were performed to quantify the modulus of elasticity in bending (MoE) of the seven beams. Then, Resistograph® and Pilodyn® tests were done to assess the superficial decay and to have aclearer idea of the voids dimensions. Then, two beams were tested in bending until failure to evaluate the bending strength. In a second step, end parts were cut from the beams, one per end of the beams, to perform Resistograph®, Pilodyn® and ultrasound tests, to quantify the density of the beams and to extract meso-specimens to be used in tension parallel to the grain tests
Resumo:
This study presents an experimental program to assess the tensile strain distribution along prestressed carbon fiber reinforced polymer (CFRP) reinforcement flexurally applied on the tensile surface of RC beams according to near surface mounted (NSM) technique. Moreover, the current study aims to propose an analytical formulation, with a design framework, for the prediction of distribution of CFRP tensile strain and bond shear stress and, additionally, the prestress transfer length. After demonstration the good predictive performance of the proposed analytical approach, parametric studies were carried out to analytically evaluate the influence of the main material properties, and CFRP and groove cross section on the distribution of the CFRP tensile strain and bond shear stress, and on the prestress transfer length. The proposed analytical approach can also predict the evolution of the prestress transfer length during the curing time of the adhesive by considering the variation of its elasticity modulus during this period.
Resumo:
Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.
Resumo:
Supplementary information available at: http://www.rsc.org/suppdata/c5/gc/c5gc02231b/c5gc02231b1.pdf
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Química)
Resumo:
This study compares the performance of Portuguese-German heritage children and adult L2 speakers of European Portuguese whose L1 is German with respect to two aspects of grammar, adverb placement and VP-ellipsis, which depend on a core syntactic property of the language, verb movement. The results show that both groups have acquired V-to-I and adverb placement, showing no influence of a V2 grammar. Performance in the VP-ellipsis task is more complex: heritage children produce VP-ellipsis at the level of controls, as opposed to L2 speakers; however, both L2 and heritage speakers show that crosslinguistic influence may produce a preference for pronoun substitution over VP-ellipsis in a task asking for redundancy resolution. Nevertheless, given that overall results show that heritage children perform at the level of L1 children, we take our results to support approaches to heritage bilingualism which suggest the development of an intact grammar in childhood.