9 resultados para earthquakes
em Universidade do Minho
Resumo:
Existing masonry structures are usually associated to a high seismic vulnerability, mainly due to the properties of the materials, weak connections between floors and load-bearing walls, high mass of the masonry walls and flexibility of the floors. For these reasons, the seismic performance of existing masonry structures has received much attention in the last decades. This study presents the parametric analysis taking into account the deviations on features of the gaioleiro buildings - Portuguese building typology. The main objective of the parametric analysis is to compare the seismic performance of the structure as a function of the variations of its properties with respect to the response of a reference model. The parametric analysis was carried out for two types of structural analysis, namely for the non-linear dynamic analysis with time integration and for the pushover analysis with distribution of forces proportional to the inertial forces of the structure. The Young's modulus of the masonry walls, Young's modulus of the timber floors, the compressive and tensile non-linear properties (strength and fracture energy) were the properties considered in both type of analysis. Additionally, in the dynamic analysis, the influences of the vis-cous damping and of the vertical component of the earthquake were evaluated. A pushover analysis proportional to the modal displacement of the first mode in each direction was also carried out. The results shows that the Young's modulus of the masonry walls, the Young's modulus of the timber floors and the compressive non-linear properties are the pa-rameters that most influence the seismic performance of this type of tall and weak existing masonry structures. Furthermore, it is concluded that that the stiffness of the floors influences significantly the strength capacity and the collapse mecha-nism of the numerical model. Thus, a study on the strengthening of the floors was also carried out. The increase of the thickness of the timber floors was the strengthening technique that presented the best seismic performance, in which the reduction of the out-of-plane displacements of the masonry walls is highlighted.
Resumo:
Seismic investigations of typical south European masonry infilled frames were performed by testing two reduced scale specimens: one in the in-plane direction and another in the out-ofplane direction. Information about geometry and reinforcement scheme of those structures constructed in 1980s were obtained by [1]. The specimen to be tested in the in-plane direction was constructed as double leaf masonry while the specimen for testing in the out-of-plane direction is constructed with only its exterior leaf since the recent earthquakes have highlighted the vulnerability of the external leaf of the infills in out-of-plane direction [2]. The tests were performed by applying the pre-defined values of displacements in the in-plane and out-of-plane directions in the control points. For in-plane testing it was done by hydraulic actuator and for out-of-plane testing through the application of an airbag. Input and output air in the airbag was controlled by using a software to apply a specific displacement in the control point of the infill wall. Mid-point of the infill was assumed as a control point for outof- plane testing. Deformation and crack patterns of the infill confirm the formation of two-way arching mechanism of the masonry infill until collapse of the upper horizontal interface between infill and frame which is known as weakest interface due to difficulties in filling the mortar between bricks of last row and upper beam. This results in the crack opening through a welldefined path and the consequent collapse of the infill.
Resumo:
Considering that vernacular architecture may bear important lessons on hazard mitigation, this chapter focuses on the European Mediterranean countries and studies traditional seismic-resistant architectural elements and techniques that local populations developed to prevent or repair earthquake damage. This area was selected as a case study because, as a highly seismic region, it has suffered the effect of many earthquakes along the history and, thus, regions within this area are prone to have developed a Local Seismic Culture. After reviewing seismic resistant construction concepts, a wide range of traditional construction solutions that, in many cases, have shown to improve the seismic performance of vernacular constructions of these regions is presented, as a contribution to the general overview of retrofitting building systems provided in this book. The main motivation is that most of these techniques can be successfully applied to preserve and to retrofit surviving examples without prejudice for their identity.
Resumo:
The vulnerability of masonry infill walls has been highlighted in recent earthquakes in which severe inplane damage and out-of-plane collapse developed, justifying the investment in the proposal of strengthening solutions aiming to improve the seismic performance of these construction elements. Therefore, this work presents an innovative strengthening solution to be applied in masonry infill walls, in order to avoid brittle failure and thus minimize the material damage and human losses. The textilereinforced mortar technique (TRM) has been shown to improve the out-of-plane resistance of masonry and to enhance its ductility, and here an innovative reinforcing mesh composed of braided composite rods is proposed. The external part of the rod is composed of braided polyester whose structure is defined so that the bond adherence with mortar is optimized. The mechanical performance of the strengthening technique to improve the out-of-plane behaviour of brick masonry is assessed based on experimental bending tests. Additionally, a comparison of the mechanical behaviour of the proposed meshes with commercial meshes is provided. The idea is that the proposed meshes are efficient in avoiding brittle collapse and premature disintegration of brick masonry during seismic events.
Resumo:
Timber frame construction is characteristic of several historic city centres as well as of vernacular architecture in several countries around the world, either motivated by the availability of materials and construction traditions or by the need of reducing the seismic vulnerability of buildings, namely in south European countries, where this construction technique was adopted for seismic-resistance purposes. From past earthquakes, it has been seen that timber frame construction can be viewed as an interesting technology as it has exhibited a very reasonable behaviour when compared to other traditional construction techniques such as masonry walls. This chapter provides an overview of the main insights on the seismic performance of timber frame buildings from the evidences of past earthquakes and provides the main results of recent research focused on the in-plane cyclic behavior of timber frame walls with distinct geometrical configurations. Additionally, the main seismic performance indexes of timber frame walls, both unreinforced and retrofitted, are presented and discussed in detail.
Resumo:
Given the fact that using timber frame structures has proven to improve the seismic behavior of vernacular architecture, as has been reported in past earthquakes in many countries, its preservation as a traditional earthquake resistant practice is important. This paper firstly intends to evaluate whether the use of timber frames as a traditional seismic resistant technique for vernacular architecture in the South of Portugal, traditionally a seismic region, is still active. Secondly, the city of Vila Real de Santo António was selected as a case study because it also followed a Pombaline development contemporary to the reconstruction of Lisbon. The plan included the provision of timber frame partition walls for some of the buildings and, thus, an overview of the type of constructions originally conceived is provided. Finally, the alterations done in the original constructions and the current state of the city center are described and the effect of these changes on the seismic vulnerability of the city is discussed.
Resumo:
The value of preserving historic buildings is increasingly accepted by society, which not only recognizes built cultural heritage as a part of its identity but is also more cognizant of its economic value. In Europe, for example, tourism accounts for 10 percent of the GDP in the EU and 12 percent of employment.1 Built cultural heritage is a fundamental element of what draws tourists to European destinations. To a great extent, the value of historic buildings rests in the integrity of their components as unique products of the technology of their time and place. Unfortunately, cultural heritage buildings are particularly vulnerable to disasters, for a variety of reasons. They are often damaged or in a state of deterioration; they were built with materials with low resistance; they are heavy; and the connections among their various structural components are frequently insufficient. The main causes of damage are lack of maintenance, water-induced deterioration (from rain or rising damp), soil settlement, and extreme events such as earthquakes. Earthquakes have caused hundreds of thousands of deaths in the last decade, in addition to the tremendous losses in built cultural heritage.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil