13 resultados para dependency of attributes

em Universidade do Minho


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de Doutoramento - Programa Doutoral em Engenharia Industrial e Sistemas (PDEIS)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento Geografia (Área de Especialização: Geografia e Planeamento Regional)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Software reconfigurability became increasingly relevant to the architectural process due to the crescent dependency of modern societies on reliable and adaptable systems. Such systems are supposed to adapt themselves to surrounding environmental changes with minimal service disruption, if any. This paper introduces an engine that statically applies reconfigurations to (formal) models of software architectures. Reconfigurations are specified using a domain specific language— ReCooPLa—which targets the manipulation of software coordinationstructures,typicallyusedinservice-orientedarchitectures(soa).Theengine is responsible for the compilation of ReCooPLa instances and their application to the relevant coordination structures. The resulting configurations are amenable to formal analysis of qualitative and quantitative (probabilistic) properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Genética Molecular

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the assessment of the out-of-plane response due to seismic loading of a masonry structure without rigid diaphragm. This structure corresponds to real scale brick masonry specimen with a main façade connected to two return walls. Two modelling approaches were defined for this evaluation. The first one consisted on macro modelling, whereas the second one on simplified micro modelling. As a first step of this study, static nonlinear analyses were conducted to the macro model aiming at evaluating the out-of-plane response and failure mechanism of the masonry structure. A sensibility analyses was performed in order to assess the mesh size and material model dependency. In addition, the macro models were subjected to dynamic nonlinear analyses with time integration in order to assess the collapse mechanism. Finally, these analyses were also applied to a simplified micro model of the masonry structure. Furthermore, these results were compared to experimental response from shaking table tests. It was observed that these numerical techniques simulate correctly the in-plane behaviour of masonry structures. However, the

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. OBJECTIVE: The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. METHODS: The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies’ safety conditions were also analyzed. RESULTS: Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies’ safety conditions; the organizational scale is the one that best reflects the actual safety conditions. CONCLUSIONS: The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups’ safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Candida bracarensis is an uncommon Candida species found during an epidemiological study of candidiasis performed in Braga, Portugal. Initially, it was identified as C. glabrata, but recently detailed analyses pointed out their differences. So, little information is still available about C. bracarensis virulence factors and antifungal susceptibilities. Therefore, the main goal of this work is to evaluate the ability of C. bracarensis to form biofilms, to produce hydrolytic enzymes (proteases, phospholipases and hemolysins), as well as its susceptibility to amphotericin B and fluconazole. It was shown, for the first time, that all C. bracarensis strains were able to form biofilms and display proteinase and hemolytic activities. Moreover, although planktonic cells presented antifungal susceptibility, amphotericin B and fluconazole were unable to inhibit biofilm formation and eradicate pre-formed biofilms. Due to the propensity of C. bracarensis to display antifungal resistance and virulence attributes, the control of these emerging pathogens is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of parts produced by Free Form Extrusion (FFE), an increasingly popular additive manufacturing technique, depends mainly on their dimensional accuracy, surface quality and mechanical performance. These attributes are strongly influenced by the evolution of the filament temperature and deformation during deposition and solidification. Consequently, the availability of adequate process modelling software would offer a powerful tool to support efficient process set-up and optimisation. This work examines the contribution to the overall heat transfer of various thermal phenomena developing during the manufacturing sequence, including convection and radiation with the environment, conduction with support and between adjacent filaments, radiation between adjacent filaments and convection with entrapped air. The magnitude of the mechanical deformation is also studied. Once this exercise is completed, it is possible to select the material properties, process variables and thermal phenomena that should be taken in for effective numerical modelling of FFE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Olive oils may be commercialized as intense, medium or light, according to the intensity perception of fruitiness, bitterness and pungency attributes, assessed by a sensory panel. In this work, the capability of an electronic tongue to correctly classify olive oils according to the sensory intensity perception levels was evaluated. Cross-sensitivity and non-specific lipid polymeric membranes were used as sensors. The sensor device was firstly tested using quinine monohydrochloride standard solutions. Mean sensitivities of 14±2 to 25±6 mV/decade, depending on the type of plasticizer used in the lipid membranes, were obtained showing the device capability for evaluating bitterness. Then, linear discriminant models based on sub-sets of sensors, selected by a meta-heuristic simulated annealing algorithm, were established enabling to correctly classify 91% of olive oils according to their intensity sensory grade (leave-one-out cross-validation procedure). This capability was further evaluated using a repeated K-fold cross-validation procedure, showing that the electronic tongue allowed an average correct classification of 80% of the olive oils used for internal-validation. So, the electronic tongue can be seen as a taste sensor, allowing differentiating olive oils with different sensory intensities, and could be used as a preliminary, complementary and practical tool for panelists during olive oil sensory analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For any vacuum initial data set, we define a local, non-negative scalar quantity which vanishes at every point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity only depends on the quantities used to construct the vacuum initial data set which are the Riemannian metric defined on the initial data hypersurface and a symmetric tensor which plays the role of the second fundamental form of the embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an implementation in a numerical code. The scalar could also be useful in studies of the non-linear stability of the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial data in a local and algorithmic way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica.