4 resultados para cytotoxicity assays
em Universidade do Minho
Resumo:
Clinical effectiveness of imatinib mesylate in cancer treatment is compromised by its off-target cardiotoxicity. In the present study, we have developed physically stable imatinib mesylate-loaded poly(lactide-co-glycolide) nanoparticles (INPs) that could sustainably release the drug, and studied its efficacy by in vitro anticancer and in vivo cardiotoxicity assays. MTT (methylthiazolyldiphenyl-tetrazolium bromide) assay revealed that INPs are more cytotoxic to MCF-7 breast cancer cells compared to the equivalent concentration of free imatinib mesylate. Wistar rats orally administered with 50 mg/kg INPs for 28 days showed no significant cardiotoxicity or associated changes. Whereas, increased alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels, and reduced white blood cell, red blood cell, and hemoglobin content were observed in the animals administered with free drug. While the histological sections from hearts of animals that received INPs did not show any significant cardiotoxic symptoms, loss of normal architecture and increased cytoplasmic vacuolization were observed in the heart sections of animals administered with free imatinib mesylate. Based on these results, we conclude that nano-encapsulation of imatinib mesylate increases its efficacy against cancer cells, with almost no cardiotoxicity.
Resumo:
Despite the vast investigation and the large amount of products already available in the market to treat the different bone defects there is still a growing need to develop more advanced and complex therapeutic strategies. In this context, a mixture of Marine Hydroxyapatite-Fluorapatite:Collagen (HA-FP:ASC) seems to be a promising solution to overcome these bone defects, specifically, dental defects. HA-FP particles (20–63 μm) were obtained through pyrolysis (950°C, 12 h) of shark teeth (Isurus oxyrinchus, P. glauca), and Type I collagen was isolated from Prionace glauca skin as previously described (1). After the steps of purification, collagen was solubilized in 0.5 M acetic acid and HA-FP added producing three different formulations: were produced, 30:70, 50:50 and 70:30 of HA-FP:ASC, respectively. EDC/NHS and HMDI binding agents were used to stabilize the produced scaffolds. Mechanical properties were evaluated by compression tests. SEM analysis allowed observing the mineral deposition, after immersion in simulated body fluid and also permitted to evaluate how homogenous was the distribution of HA-FP in the different scaffold formulations, also confirmed by μ-CT assay. It was readily visible by Cytotoxicity and life/dead CLSM assays that cells were able to adhere and proliferate in the produced scaffolds. Scaffolds crosslinked with EDC/NHS showed lower cytotoxicity, being the ones chosen for further cellular evaluation.
Resumo:
Membrane-like scaffolds are suitable to induce regeneration in many and different anatomic sites, such as periodontal membrane, skin, liver and cardiac tissues. In some circumstances, the films should adapt to geometrical changes of the attached tissues, such as in cardiac or blood vessel tissue engineering applications. In this context, we developed stretchable two-dimensional multilayer constructs through the assembling of two natural-based polyelectrolytes, chitosan (CHT) and chondroitin sulphate (CS), using the layer-by-layer methodology. The morphology, topography and the transparency of the films were evaluated. The in- fluence of genipin, a natural-derived cross-linker agent, was also investigated in the control of the mechanical properties of the CHT/CS films. The water uptake ability can be tailored by changing the cross-linker concentration, which influenced the young modulus and ultimate tensile strength. The maximum extension tends to decrease with the increase of genipin concentration, compromising the elastic properties of CHT/CS films: nevertheless using lower cross-linker contents, the ultimate tensile stress is similar to the films not cross-linked but exhibiting a significant higher modulus. The in vitro biological assays showed better L929 cell adhesion and proliferation when using the crosslinked membranes and confirmed the non-cytotoxicity of the CHT/CS films. The developed free-standing biomimetic multilayer could be designed to fulfill specific therapeutic requirements by tuning properties such as swelling, mechanical and biological performances.
Resumo:
Dissertação de mestrado em Genética Molecular