27 resultados para cuticle compound

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Biofísica e Bionanossistemas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programa Doutoral em Engenharia Têxtil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Educação - Especialidade em Política Educativa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramente em Ciências (área de especialização em Química).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing interest for greener and biological methods of synthesis has led to the development of non-toxic and comparatively more bioactive nanoparticles. Unlike physical and chemical methods of nanoparticle synthesis, microbial synthesis in general and mycosynthesis in particular is cost-effective and environment-friendly. However, different aspects, such as the rate of synthesis, monodispersity and downstream processing, need to be improved. Many fungal-based mechanisms have been proposed for the formation of silver nanoparticles (AgNPs), mainly those involving the presence of nitrate reductase, which has been detected in filtered fungus cell used for AgNPs production. There is a general acceptance that nitrate reductase is the main responsible for the reduction of Ag ions for the formation of AgNPs. However, this generally accepted mechanism for fungal AgNPs production is not totally understood. In order to elucidate the molecules participating in the mechanistic formation of metal nanoparticles, the current study is focused on the enzymes and other organic compounds involved in the biosynthesis of AgNPs. The use of each free fungal mycelium of both Stereum hirsutum and Fusarium oxysporum will be assessed. In order to identify defective mutants on the nitrate reductase structural gene niaD, fungal cultures of S.hirsutum and F.oxysporum will be selected by chlorate resistance. In addition, in order to verify if each compound identified as key-molecule influenced on the production of nanoparticles, an in vitro assay using different nitrogen sources will be developed. Lately, fungal extracellular enzymes will be measured and an in vitro assay will be done. Finally, The nanoparticle formation and its characterization will be evaluated by UV-visible spectroscopy, electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), and LC-MS/MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of the interaction between hair filaments and formulations or peptides is of utmost importance in fields like cosmetic research. Keratin intermediate filaments structure is not fully described, limiting the molecular dynamics (MD) studies in this field although its high potential to improve the area. We developed a computational model of a truncated protofibril, simulated its behavior in alcoholic based formulations and with one peptide. The simulations showed a strong interaction between the benzyl alcohol molecules of the formulations and the model, leading to the disorganization of the keratin chains, which regress with the removal of the alcohol molecules. This behavior can explain the increase of peptide uptake in hair shafts evidenced in fluorescence microscopy pictures. The model developed is valid to computationally reproduce the interaction between hair and alcoholic formulations and provide a robust base for new MD studies about hair properties. It is shown that the MD simulations can improve hair cosmetic research, improving the uptake of a compound of interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palm oil (PO) is a very important commodity for many countries and especially Indonesia and Malaysia who are the predominant producers. PO is used in ca. 30% of supermarket foods, cosmetics, cooking and as biodiesel. The growth of oil palms in plantations is controversial as the production methods contribute to climate change and cause environmental damage [1]. The plant is subjected to a devastating disease in these two countries caused by the white rot fungus Ganoderma. There are no satisfactory methods to diagnose the disease in the plant as they are too slow and/or inaccurate. The lipid compound ergosterol is unique to fungi and is used to measure growth especially in solid substrates. We report here on the use of ergosterol to measure the growth of Ganoderma in oil palms using HPLC and TLC methods [2]. The method is rapid and correlates well with other methods and is capable of being used on-site, hence improving the speed of analysis and allowing remedial action. Climate change will affect the health of OP [1] and rapid detection methods will be increasingly required to control the disease. [1] Paterson, RRM, Kumar, L, Taylor, S, Lima N. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia. Scientific Reports, 5, 2015, 14457. [2] Muniroh, MS, Sariah M, Zainal Abidin, MA, Lima, N, Paterson, RRM. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC. Journal of Microbiological Methods, 100, 2014, 143–147.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biomedicina)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, the ethanolic extracts of fourteen edible mushrooms were investigated for their anti-inflammatory potential in LPS (lipopolysaccharide) activated RAW 264.7 macrophages. Furthermore the extracts were chemically characterized in terms of phenolic acids and related compounds. The identified molecules (p-hydroxybenzoic, p-coumaric and cinnamic acids) and their glucuronated and methylated derivatives obtained by chemical synthesis were also evaluated for the same bioactivity, in order to establish structure-activity relationships and to comprehend the effects of in vivo metabolism reactions in the activity of the compounds. The extracts of Pleurotus ostreatus, Macrolepiota procera, Boletus impolitus and Agaricus bisporus revealed the strongest anti-inflammatory potential (EC50 values 96 ± 1 to 190 ± 6 µg/mL, and also the highest concentration of cinnamic acid (656 to 156 µg/g), which was also the individual compound with the highest anti-inflammatory activity. The derivatives of p-coumaric acid revealed the strongest properties, specially the derivative methylated in the carboxylic group (CoA-M1) that exhibited similar activity to the one showed by dexamethaxone used as anti-inflammatory standard; by contrast, the derivatives of p-hydroxybenzoic revealed the lowest inhibition of NO production. All in all, whereas the conjugation reactions change the chemical structure of phenolic acids and may increase or decrease their activity, the glucuronated and methylated derivatives of the studied compounds are still displaying anti-inflammatory activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Comunicação - Especialidade em Comunicação Estratégica e Organizacional

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia de Materiais

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências (Especialidade em Química)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.