25 resultados para cracking

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adding fibres to concrete provides several advantages, especially in terms of controlling the crack opening width and propagation after the cracking onset. However, distribution and orientation of the fibres toward the active crack plane are significantly important in order to maximize its benefits. Therefore, in this study, the effect of the fibre distribution and orientation on the post-cracking tensile behaviour of the steel fibre reinforced self-compacting concrete (SFRSCC) specimens is investigated. For this purpose, several cores were extracted from distinct locations of a panel and were subjected to indirect (splitting) and direct tensile tests. The local stress-crack opening relationship (σ-w) was obtained by modelling the splitting tensile test under the finite element framework and by performing an Inverse Analysis (IA) procedure. Afterwards the σ-w law obtained from IA is then compared with the one ascertained directly from the uniaxial tensile tests. Finally, the fibre distribution/orientation parameters were determined adopting an image analysis technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

978-2-35158-155-1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the macro steel fiber (SF), carbon fiber (CF) and nano carbon black (NCB) as triphasic conductive materials were added into concrete, in order to improve the conductivity and ductility of concrete. The influence of NCB, SF and CF on the post crack behavior and conductivity of concrete was explored. The effect of the triphasic conductive materials on the self-diagnosing ability to the load–deflection property and crack widening of conductive concrete member subjected to bending were investigated. The relationship between the fractional change in surface impedance (FCR) and the crack opening displacement (COD) of concrete beams with conductive materials has been established. The results illustrated that there is a linear relationship between COD and FCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents an experimental and numerical study for the mechanical characterization under uniaxial compressive loading of the adobe masonry of one of the most emblematic archaeological complex in Peru, 'Huaca de la Luna' (100-650AD). Compression tests of prisms were carried out with original material brought to the laboratory. For measuring local deformations in the tests, displacement transducers were used which were complemented by a digital image correlation system which allowed a better understanding of the failure mechanism. The tests were then numerically simulated by modelling the masonry as a continuum media. Several approaches were considered concerning the geometrical modelling, namely 2D and 3D simplified models, and 3D refined models based on a photogrammetric reconstruction. The results showed a good approximation between the numerical prediction and the experimental response in all cases. However, the 3D models with irregular geometries seem to reproduce better the cracking pattern observed in the tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since concrete is the most widely utilized construction material, several solutions are currently being developed and investigated for enhancing the sustainability of cementitious materials. One of these solutions is based on producing Recycled Concrete Aggregates (RCA) from existing concrete members resulting by either industrial processes or demolitions of existing structures as a whole. Moreover, waste resulting from industrial processes other than the building construction (i.e., tire recycling, production of steel, powders resulting from other depuration processes) are also being considered as possible low-impact constituents for producing structural concrete and Fiber-Reinforced Cementitious Composites (FRCC). Furthermore, the use of natural fibers is another option for producing environmentally-friendly and cost-effective materials, depending on the local availability of raw materials. To promote the use of concretes partially composed of recycled constituents, their influence on the mechanical and durability performance of these concretes have to be deeply investigated and correlated. This was the main goal of the EnCoRe Project (www.encore-fp7.unisa.it), a EU-funded initiative, whose activities and main findings are summarized in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste artigo, formulações analíticas são desenvolvidas para calcular a resistência à punção de lajes lisas de concreto reforçado com fibras de aço (CRFA) e que também são reforçadas à flexão por barras de aço (reforço convencional). A partir de análises estatísticas sobre um banco de dados que reúne resultados experimentais de caracterização do comportamento pós-fissuração do CRFA, equações são estabelecidas para avaliar parâmetros da resistência residual à tração na flexão (fRi) a partir de informações fundamentais que caracterizam a fibra de aço. O parâmetro de resistência fRi, proposto pelo ModelCode10 foi usado para definir a lei tensão-abertura da fissura (σ-w) que simula o mecanismo de reforço da fibra em um material cimentício. A segunda parte do artigo descreve uma formulação analítica baseada nos conceitos propostos por Muttoni e Ruiz, onde a lei σ-w é convenientemente integrada para simular a contribuição da fibra de aço na resistência à punção de lajes em CRFA. A partir de um banco de dados, composto de 154 ensaios de punção, o bom desempenho da proposta apresentada é demonstrado. O desempenho do modelo também é evidenciado comparando-se os seus resultados a outros modelos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente artigo discute a metodologia de um novo modelo para calcular a resistência à punção simétrica de lajes de concreto reforçado com fibras de aço (CRFA). O modelo é fundamentado na teoria da fissura crítica de cisalhamento de Muttoni e seus coautores e na proposta do ModelCode10 para simular o comportamento pós-fissuração do CRFA. O desempenho do modelo é avaliado a partir de um banco de dados (BD), coletado da literatura técnica, que totaliza 154 lajes. Os resultados são avaliados em função da precisão, da dispersão e do nível de conservadorismo, a partir do parâmetro λ=Vexp/Vteo, sendo Vexp e Vteo, respectivamente, os resultados obtidos do BD e do modelo. Finalmente, para confirmar o desempenho do modelo, os seus resultados são comparados a outros 7 modelos da literatura técnica e ambos são classificados segundo o critério modificado de Collins, o Demerit Points Classifications – DPC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the fracture mode I parameters of steel fibre reinforced self-compacting concrete (SFRSCC) were derived from the numerical simulation of indirect splitting tensile tests. The combined experimental and numerical research allowed a comparison between the stress-crack width (σ - w) relationship acquired straightforwardly from direct tensile tests, and the σ - w response derived from inverse analysis of the splitting tensile tests results. For this purpose a comprehensive nonlinear 3D finite element (FE) modeling strategy was developed. A comparison between the experimental results obtained from splitting tensile tests and the corresponding FE simulations confirmed the good accuracy of the proposed strategy to derive the σ – w for these composites. It is concluded that the post-cracking tensile laws obtained from inverse analysis provided a close relationship with the ones obtained from the experimental uniaxial tensile tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the numerical simulations of the punching behaviour of centrally loaded steel fibre reinforced self-compacting concrete (SFRSCC) flat slabs. Eight half scaled slabs reinforced with different content of hooked-end steel fibres (0, 60, 75 and 90 kg/m3) and concrete strengths of 50 and 70 MPa were tested and numerically modelled. Moreover, a total of 54 three-point bending tests were carried out to assess the post-cracking flexural tensile strength. All the slabs had a relatively high conventional flexural reinforcement in order to promote the occurrence of punching failure mode. Neither of the slabs had any type of specific shear reinforcement rather than the contribution of the steel fibres. The numerical simulations were performed according to the Reissner-Mindlin theory under the finite element method framework. Regarding the classic formulation of the Reissner-Mindlin theory, in order to simulate the progressive damage induced by cracking, the shell element is discretized into layers, being assumed a plane stress state in each layer. The numerical results are, then, compared with the experimental ones and it is possible to notice that they accurately predict the experimental force-deflection relationship. The type of failure observed experimentally was also predicted in the numerical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research is showing that the addition of Recycled Steel Fibres (RSF) from wasted tyres can decrease significantly the brittle behaviour of cement based materials, by improving its toughness and post-cracking resistance. In this sense, Recycled Steel Fibre Reinforced Concrete (RSFRC) seems to have the potential to constitute a sustainable material for structural and non-structural applications. To assess this potential, experimental and numerical research was performed on the use of RSFRC in elements failing in bending and in beams failing in shear. The values of the fracture mode I parameters of the developed RSFRC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To assess the possibility of using RSF as shear reinforcement in Reinforced Concrete (RC) beams, three point bending tests were executed with three series of RSFRC beams flexurally reinforced with a relatively high reinforcement ratio of longitudinal steel bars in order to assure shear failure for all the tested beams. By performing material nonlinear simulations with a computer program based on the finite element method (FEM), the applicability of the fracture mode I crack constitutive law derived from the inverse analysis is assessed for the prediction of the behaviour of these beams. The performance of the formulation proposed by RILEM TC 162 TDF and CEB-FIP 2010 for the prediction of the shear resistance of fibre reinforced concrete elements was also evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the force–deflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento - Civil Engineering