45 resultados para consumo energetico Smart Environment sensori
em Universidade do Minho
Resumo:
Architectural design is often associated with aesthetics and style, but it is also very important to building performance and sustainability. There are some studies associating architectural design to the choice for materials from sustainable sources, to indoor air quality, to energy efficiency and productivity. This article takes a step further to analyse how the use of efficient interior design techniques can impact the habitable space in order to improve building sustainability in land use. Smart interior design, a current trend related to the use of efficient and flexible furniture and movable walls in tiny or compact apartments, is analysed. A building with a standard design is used as a case study reference building and compared to a proposed theoretical design alternative using smart interior design techniques. In order to correctly assess sustainability performance, a quantifiable and verified method is used. Results showed that the use of smart interior design techniques can greatly reduce buildingsâ impact on the environment.
Resumo:
Publicado em "Gaceta sanitaria", vol. 29 (Espec. Congr.), p. 145-146
Resumo:
This paper presents an on-board bidirectional battery charger for Electric Vehicles (EVs), which operates in three different modes: Grid-to- Vehicle (G2V), Vehicle-to-Grid (V2G), and Vehicle-to-Home (V2H). Through these three operation modes, using bidirectional communications based on Information and Communication Technologies (ICT), it will be possible to exchange data between the EV driver and the future smart grids. This collaboration with the smart grids will strengthen the collective awareness systems, contributing to solve and organize issues related with energy resources and power grids. This paper presents the preliminary studies that results from a PhD work related with bidirectional battery chargers for EVs. Thus, in this paper is described the topology of the on-board bidirectional battery charger and the control algorithms for the three operation modes. To validate the topology it was developed a laboratory prototype, and were obtained experimental results for the three operation modes.
Resumo:
This paper presents a new approach of pre-defined profiles, based in different voltage and current values, to control the charging and discharging processes of batteries in order to assess their performance. This new approach was implemented in a prototype that was specially developed for such purpose. This prototype is a smart power electronics platform that allows to perform batteries analysis and to control the charging and discharging processes through a web application using pre-defined profiles. This platform was developed aiming to test different batteries technologies. Considering the relevance of the energy storage area based in batteries, especially for the batteries applied to electric mobility systems, this platform allows to perform controlled tests to the batteries, in order to analyze the batteries performance under different scenarios of operation. Besides the results obtained with the batteries, this work also intends to produce results that can contribute to an involvement in the strengthening of the Internet-of-Things.
Resumo:
This paper proposes a smart battery charging strategy for Electric Vehicles (EVs) targeting the future smart homes. The proposed strategy consists in regulate the EV battery charging current in function of the total home current, aiming to prevent overcurrent trips in the main switch breaker. Computational and experimental results were obtained under real-time conditions to validate the proposed strategy. For such purpose was adapted a bidirectional EV battery charger prototype to operate in accordance with the aforementioned strategy. The proposed strategy was validated through experimental results obtained both in steady and transient states. The results show the correct operation of the EV battery charger even under heavy load variations.
Resumo:
This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.
Resumo:
It is a difficult task to avoid the “smart systems” topic when discussing smart prevention and, similarly, it is a difficult task to address smart systems without focusing their ability to learn. Following the same line of thought, in the current reality, it seems a Herculean task (or an irreparable omission) to approach the topic of certified occupational health and safety management systems (OHSMS) without discussing the integrated management systems (IMSs). The available data suggest that seldom are the OHSMS operating as the single management system (MS) in a company so, any statement concerning OHSMS should mainly be interpreted from an integrated perspective. A major distinction between generic systems can be drawn between those that learn, i.e., those systems that have “memory” and those that have not. These former systems are often depicted as adaptive since they take into account past events to deal with novel, similar and future events modifying their structure to enable success in its environment. Often, these systems, present a nonlinear behavior and a huge uncertainty related to the forecasting of some events. This paper seeks to portray, for the first time as we were able to find out, the IMSs as complex adaptive systems (CASs) by listing their properties and dissecting the features that enable them to evolve and self-organize in order to, holistically, fulfil the requirements from different stakeholders and thus thrive by assuring the successful sustainability of a company. Based on the revision of literature carried out, this is the first time that IMSs are pointed out as CASs which may develop fruitful synergies both for the MSs and for CASs communities. By performing a thorough revision of literature and based on some concepts embedded in the “DNA” of the subsystems implementation standards it is intended, specifically, to identify, determine and discuss the properties of a generic IMS that should be considered to classify it as a CAS.
Resumo:
Forming suitable learning groups is one of the factors that determine the efficiency of collaborative learning activities. However, only a few studies were carried out to address this problem in the mobile learning environments. In this paper, we propose a new approach for an automatic, customized, and dynamic group formation in Mobile Computer Supported Collaborative Learning (MCSCL) contexts. The proposed solution is based on the combination of three types of grouping criteria: learner’s personal characteristics, learner’s behaviours, and context information. The instructors can freely select the type, the number, and the weight of grouping criteria, together with other settings such as the number, the size, and the type of learning groups (homogeneous or heterogeneous). Apart from a grouping mechanism, the proposed approach represents a flexible tool to control each learner, and to manage the learning processes from the beginning to the end of collaborative learning activities. In order to evaluate the quality of the implemented group formation algorithm, we compare its Average Intra-cluster Distance (AID) with the one of a random group formation method. The results show a higher effectiveness of the proposed algorithm in forming homogenous and heterogeneous groups compared to the random method.
Resumo:
The Internet of Things (IoT) is a concept that can foster the emergence of innovative applications. In order to minimize parents’s concerns about their children’s safety, this paper presents the design of a smart Internet of Things system for identifying dangerous situations. The system will be based on real time collection and analysis of physiological signals monitored by non-invasive and non-intrusive sensors, Frequency IDentification (RFID) tags and a Global Positioning System (GPS) to determine when a child is in danger. The assumption of a state of danger is made taking into account the validation of a certain number of biometric reactions to some specific situations and according to a self-learning algorithm developed for this architecture. The results of the analysis of data collected and the location of the child will be able in real time to child’s care holders in a web application.
Resumo:
This paper presents a proposal for a management model based on reliability requirements concerning Cloud Computing (CC). The proposal was based on a literature review focused on the problems, challenges and underway studies related to the safety and reliability of Information Systems (IS) in this technological environment. This literature review examined the existing obstacles and challenges from the point of view of respected authors on the subject. The main issues are addressed and structured as a model, called "Trust Model for Cloud Computing environment". This is a proactive proposal that purposes to organize and discuss management solutions for the CC environment, aiming improved reliability of the IS applications operation, for both providers and their customers. On the other hand and central to trust, one of the CC challenges is the development of models for mutual audit management agreements, so that a formal relationship can be established involving the relevant legal responsibilities. To establish and control the appropriate contractual requirements, it is necessary to adopt technologies that can collect the data needed to inform risk decisions, such as access usage, security controls, location and other references related to the use of the service. In this process, the cloud service providers and consumers themselves must have metrics and controls to support cloud-use management in compliance with the SLAs agreed between the parties. The organization of these studies and its dissemination in the market as a conceptual model that is able to establish parameters to regulate a reliable relation between provider and user of IT services in CC environment is an interesting instrument to guide providers, developers and users in order to provide services and secure and reliable applications.
Resumo:
Dissertação de mestrado em Construção e Reabilitação Sustentáveis
Resumo:
Dissertação de mestrado em Marketing e Estratégia
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
This paper analyzes the safety, environmental and occupational health of workers in the small construction industry in Brazil. In this sector there are still many unsafe practices, which are very common in small work sites. We used a qualitative approach to understand these problems by long interviews with people who work directly in small construction sites, including occupational physicians, civil engineers, safety engineers, safety technicians, general foremen, construction workers, labor unionists and auditors. This paper aims to demonstrate that the "invisibility" of the small sites workers makes them less safe and therefore more prone to accidents, also weakening their health. The results show that small constructions workers are less visible to society and supervision because of their short periods of work. Therefore, they are also uncovered to the rigorous applicability of principles of safety and accident prevention. Thus, it has been seen in this field of work a precarious application of NR - 18, which was specifically made for the construction sites and it needs simplification to meet normative characteristics of small construction sites. In the State of Rio de Janeiro, some laws on small sites were recently created and implemented. This study concludes that the rules to work are not being taken as seriously as the legislation determinates, remaining practically unknown by many professionals, from the plot command, supervisors, engineers, architects and technicians who work on construction sites. This ignorance creates space for the lack of safety and consequently to accidents, leading to by weakness in the workers health. Therefore, the work process needs to be modified, the safety regulation must be disseminated through safer practices, promoting employee health and ensure that the work of small sites can be visible, especially ensuring the construction workers health and safety.
Resumo:
Os recursos computacionais exigidos durante o processamento de grandes volumes de dados durante um processo de povoamento de um data warehouse faz com que a necessidade da procura de novas implementações tenha também em atenção a eficiência energética dos diversos componentes processuais que integram um qualquer sistema de povoamento. A lacuna de técnicas ou metodologias para categorizar e avaliar o consumo de energia em sistemas de povoamento de data warehouses é claramente notória. O acesso a esse tipo de informação possibilitaria a construção de sistemas de povoamento de data warehouses com níveis de consumo de energia mais baixos e, portanto, mais eficientes. Partindo da adaptação de técnicas aplicadas a sistemas de gestão de base de dados para a obtenção dos consumos energéticos da execução de interrogações, desenhámos e implementámos uma nova técnica que nos permite obter os consumos de energia para um qualquer processo de povoamento de um data warehouse, através da avaliação do consumo de cada um dos componentes utilizados na sua implementação utilizando uma ferramenta convencional. Neste artigo apresentamos a forma como fazemos tal avaliação, utilizando na demonstração da viabilidade da nossa proposta um processo de povoamento bastante típico em data warehouses – substituição encadeada de chaves operacionais -, que foi implementado através da ferramenta Kettle.