9 resultados para computational model
em Universidade do Minho
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
Dissertação de mestrado integrado em Psicologia
Resumo:
The study of the interaction between hair filaments and formulations or peptides is of utmost importance in fields like cosmetic research. Keratin intermediate filaments structure is not fully described, limiting the molecular dynamics (MD) studies in this field although its high potential to improve the area. We developed a computational model of a truncated protofibril, simulated its behavior in alcoholic based formulations and with one peptide. The simulations showed a strong interaction between the benzyl alcohol molecules of the formulations and the model, leading to the disorganization of the keratin chains, which regress with the removal of the alcohol molecules. This behavior can explain the increase of peptide uptake in hair shafts evidenced in fluorescence microscopy pictures. The model developed is valid to computationally reproduce the interaction between hair and alcoholic formulations and provide a robust base for new MD studies about hair properties. It is shown that the MD simulations can improve hair cosmetic research, improving the uptake of a compound of interest.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
This work reports the implementation and verification of a new so lver in OpenFOAM® open source computational library, able to cope with integral viscoelastic models based on the integral upper-convected Maxwell model. The code is verified through the comparison of its predictions with analytical solutions and numerical results obtained with the differential upper-convected Maxwell model
Resumo:
[Excerpt] The advantages resulting from the use of numerical modelling tools to support the design of processing equipment are almost consensual. The design of calibration systems in profile extrusion is not an exception . H owever , the complex geome tries and heat exchange phenomena involved in this process require the use of numerical solvers able to model the heat exchange in more than one domain ( calibrator and polymer), the compatibilization of the heat transfer at the profile - calibrator interface and with the ability to deal with complex geometries. The combination of all these features is usually hard to find in commercial software. Moreover , the dimension of the meshes required to ob tain accurate results, result in computational times prohibitive for industrial application. (...)
Resumo:
PhD thesis in Biomedical Engineering
Resumo:
Dissertação de mestrado integrado em Civil Engineering
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.