18 resultados para computational estimation
em Universidade do Minho
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.
Resumo:
The structural analysis involves the definition of the model and selection of the analysis type. The model should represent the stiffness, the mass and the loads of the structure. The structures can be represented using simplified models, such as the lumped mass models, and advanced models resorting the Finite Element Method (FEM) and Discrete Element Method (DEM). Depending on the characteristics of the structure, different types of analysis can be used such as limit analysis, linear and non-linear static analysis and linear and non-linear dynamic analysis. Unreinforced masonry structures present low tensile strength and the linear analyses seem to not be adequate for assessing their structural behaviour. On the other hand, the static and dynamic non-linear analyses are complex, since they involve large time computational requirements and advanced knowledge of the practitioner. The non-linear analysis requires advanced knowledge on the material properties, analysis tools and interpretation of results. The limit analysis with macro-blocks can be assumed as a more practical method in the estimation of maximum load capacity of structure. Furthermore, the limit analysis require a reduced number of parameters, which is an advantage for the assessment of ancient and historical masonry structures, due to the difficult in obtaining reliable data.
Resumo:
This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.
Resumo:
This work reports the implementation and verification of a new so lver in OpenFOAM® open source computational library, able to cope with integral viscoelastic models based on the integral upper-convected Maxwell model. The code is verified through the comparison of its predictions with analytical solutions and numerical results obtained with the differential upper-convected Maxwell model
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto
Resumo:
The receiver-operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1-specificity) for different cut-off values used to classify an individual as healthy or diseased. In time-to-event studies, however, the disease status (e.g. death or alive) of an individual is not a fixed characteristic, and it varies along the study. In such cases, when evaluating the performance of the biomarker, several issues should be taken into account: first, the time-dependent nature of the disease status; and second, the presence of incomplete data (e.g. censored data typically present in survival studies). Accordingly, to assess the discrimination power of continuous biomarkers for time-dependent disease outcomes, time-dependent extensions of true positive rate, false positive rate, and ROC curve have been recently proposed. In this work, we present new nonparametric estimators of the cumulative/dynamic time-dependent ROC curve that allow accounting for the possible modifying effect of current or past covariate measures on the discriminatory power of the biomarker. The proposed estimators can accommodate right-censored data, as well as covariate-dependent censoring. The behavior of the estimators proposed in this study will be explored through simulations and illustrated using data from a cohort of patients who suffered from acute coronary syndrome.
Resumo:
In longitudinal studies of disease, patients may experience several events through a follow-up period. In these studies, the sequentially ordered events are often of interest and lead to problems that have received much attention recently. Issues of interest include the estimation of bivariate survival, marginal distributions and the conditional distribution of gap times. In this work we consider the estimation of the survival function conditional to a previous event. Different nonparametric approaches will be considered for estimating these quantities, all based on the Kaplan-Meier estimator of the survival function. We explore the finite sample behavior of the estimators through simulations. The different methods proposed in this article are applied to a data set from a German Breast Cancer Study. The methods are used to obtain predictors for the conditional survival probabilities as well as to study the influence of recurrence in overall survival.
Resumo:
Mycotoxins are toxic secondary metabolites produced by filamentous fungi that occur naturally in agricultural commodities worldwide. Aflatoxins, ochratoxin A, patulin, fumonisins, zearalenone, trichothecenes and ergot alkaloids are presently the most important for food and feed safety. These compounds are produced by several species that belong to the Aspergillus, Penicillium, Fusarium and Claviceps genera and can be carcinogenic, mutagenic, teratogenic, cytotoxic, neurotoxic, nephrotoxic, estrogenic and immunosuppressant. Human and animal exposure to mycotoxins is generally assessed by taking into account data on the occurrence of mycotoxins in food and feed as well as data on the consumption patterns of the concerned population. This evaluation is crucial to support measures to reduce consumer exposure to mycotoxins. This work reviews the occurrence and levels of mycotoxins in Portuguese food and feed to provide a global overview of this issue in Portugal. With the information collected, the exposure of the Portuguese population to those mycotoxins is assessed, and the estimated dietary intakes are presented.
Resumo:
The aim of this work was to investigate the effect on a display gamut of varying the optical density and the position of the maximum sensitivity of the cones spectra of anomalous trichromatic observers. The anomalous cone spectral sensitivities were estimated for a set of varying optical density and maximum sensitivity spectra conditions and used to compute the display color gamut. The computed display gamut simulated for normal observers the chro- matic diversity perceived by anomalous observers. It was found that even small variations on the optical density and on the position of the maximum sensitivity spectra have an impact on the simulations of the display gamut for anomalous observers. It was also found that simulations for deuteroanomalous observers are the ones with greater impact if the estimation of the corresponding color display gamut is not carefully adjusted for the observer.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
PhD thesis in Biomedical Engineering
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.
Resumo:
A precise estimation of the postmortem interval (PMI) is one of the most important topics in forensic pathology. However, the PMI estimation is based mainly on the visual observation of cadaverous pheno- mena (e.g. algor, livor and rigor mortis) and on alternative methods such as thanatochemistry that remain relatively imprecise. The aim of this in vitro study was to evaluate the kinetic alterations of several bio- chemical parameters (i.e. proteins, enzymes, substrates, electrolytes and lipids) during putrefaction of human blood. For this purpose, we performed kinetic biochemical analysis during a 264 hour period. The results showed a significant linear correlation between total and direct bilirubin, urea, uric acid, transferrin, immunoglobulin M (IgM), creatine kinase (CK), aspartate transaminase (AST), calcium and iron with the time of blood putrefaction. These parameters allowed us to develop two mathematical models that may have predictive values and become important complementary tools of traditional methods to achieve a more accurate PMI estimation
Resumo:
Dissertação de Mestrado (Programa Doutoral em Informática)