2 resultados para compressed wavefront sensing
em Universidade do Minho
Resumo:
Earth has been a traditional building material to construct houses in Africa. One of the most common techniques is the use of sun dried or kiln fired adobe bricks with mud mortar. Fired bricks are the main cause for deforestation in countries like Malawi. Although this technique is low-cost, the bricks vary largely in shape, strength and durability. This leads to weak houses which suffer considerable damage during floods and seismic events. One solution is the use of dry-stack masonry with stabilized interlocking compressed earth blocks (ICEB). This technology has the potential of substituting the current bricks by a more sustainable kind of block. This study was made in the context of the HiLoTec project, which focuses on houses in rural areas of developing countries. For this study, Malawi was chosen for a case study. This paper presents the experimental results of tests made with dry-stack ICEBs. Soil samples from Malawi were taken and studied. Since the experimental campaign could not be carried out in Malawi, a homogenization process of Portuguese soil was made to produce ICEBs at the University of Minho, Portugal. Then, the compression and tensile strength of the materials was determined via small cylinder samples. Subsequently, the compression and flexural strength of units were determined. Finally, tests to determine the compressive strength of both prisms and masonry wallets and to determine the initial shear strength of the dry interfaces were carried out. This work provides valuable data for low-cost eco-efficient housing
Resumo:
Ti-Me binary intermetallic thin films based on a titanium matrix doped with increasing amounts of Me (Me = Al, Cu) were prepared by magnetron sputtering (under similar conditions), aiming their application in biomedical sensing devices. The differences observed on the composition and on the micro(structural) features of the films, attributed to changes in the discharge characteristics, were correlated with the electrical properties of the intermetallic systems (Ti-Al and Ti-Cu). For the same Me exposed areas placed on the Ti target (ranging from 0.25 cm2 to 20 cm2) the Cu content increased from 3.5 at.% to 71.7 at.% in the Ti-Cu system and the Al content, in Ti-Al films, ranged from 11 to 45 at.%. The structural characterization evidenced the formation of metastable Ti-Me intermetallic phases for Al/Ti atomic ratios above 0.20 and for Cu/Ti ratios above 0.25. For lower Me concentrations, the effect of the α-Ti(Me) structure domains the overall structure. With the increase amount of the Me into Ti structure a clear trend for amorphization was observed. For both systems it was observed a significant decrease of the electrical resistivity with increasing Me/Ti atomic ratios (higher than 0.5 for Al/Ti atomic ratio and higher than 1.3 for Cu/Ti atomic ratio). Although similar trends were observed in the resistivity evolution for both systems, the Ti-Cu films presented lower resistivity values in comparison to Ti-Al system.