5 resultados para chloride replacement
em Universidade do Minho
Resumo:
The incorporation of fly ash (FA) in cementitious matrices have been frequently used in order to make the matrix more resistant to the action of chlorides. On the other hand, it is known that Ca (OH)2 existing in the matrix is partially consumed by the pozzolanic reactions, which facilitates the advancement of carbonation. Given that the combined action between carbonation and chloride penetration is a fact little known, we speculate about the behaviour of the matrix in this context. This study investigates the influence of the presence of chlorides on the carbonation in mortars with FA. Samples with 0% and 40% replacement of cement CEM I 42.5 R for FA were molded with water/binder 0.56 and 0.52 respectively. After 90 days of curing the specimens were subjected to cycles of immersion/drying for 56 days. Half of the samples was subjected to the following cycle: two days in a solution containing NaCl (concentration equal to 3.5 %); 12 days in the carbonation chamber (4% of CO2). The other half was: two days in water; 12 days in the carbonation chamber. Then, the development of carbonation was evaluated. The results indicate that the presence of chlorides influences the carbonation. The specimens submitted to the exclusive action of CO2 showed a greater depth of carbonation compared to that presented by the specimens subjected to combined action. This may be related to changes in properties of the matrix which may lead to further refinement of the pores and related to the presence of the salt that can lead to partial filling of the pores and the increase in moisture content.
Resumo:
Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.
Resumo:
Organic-inorganic hybrid (OIH) sol-gel coatings based on ureasilicates (U(X)) have promising properties for use as eco-friendly coatings on hot dip galvanized steel (HDGS) and may be considered potential substitutes for pre-treatment systems containing Cr(VI). These OIH coatings reduce corrosion activity during the initial stages of contact of the HDGS samples with highly alkaline environments (cementitious media) and allow the mitigation of harmful effects of an initial excessive reaction between cement pastes and the zinc layer. However, the behavior of HDGS coated with U(X) in the presence of chloride ions has never been reported. In this paper, the performance of HDGS coated with five different U(X) coatings was assessed by electrochemical measurements in chloride-contaminated simulated concrete pore solution (SCPS). U(X) sol-gel coatings were produced and deposited on HDGS by a dip coating method. The coatings performance was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization curves measurements, macrocell current density and polarization resistance in contact with chloride-contaminated SCPS. The SEM/EDS analyses of the coatings before and after the tests were also performed. The results showed that the HDGS samples coated with the OIH coatings exhibited enhanced corrosion resistance to chloride ions when compared to uncoated galvanized steel.
Resumo:
High performance concrete (HPC) offers several advantages over normal-strength concrete, namely, high mechanical strength and high durability. Therefore, HPC allows for concrete structures with less steel reinforcement and a longer service life, both of which are crucial issues in the eco-efficiency of construction materials. Nevertheless international publications on the field of concrete containing nanoparticles are scarce when compared to Portland cement concrete (around 1%) of the total international publications. HPC nanoparticle-based publications are even scarcer. This article presents the results of an experimental investigation on the mechanical properties and durability of HPC based on nano-TiO2 and fly ash. The durability performance was assessed by means of water absorption by immersion, water absorption by capillarity, ultrasonic pulse velocity, electric resistivity, chloride diffusion and resistance to sulphuric acid attack. The results show that the concretes containing an increased content of nano-TiO2 show decreased durability performance. The results also show that concrete with 1% nano-TiO2 and 30% fly ash as Portland cement replacement show a high mechanical strength (C55/C67) and a high durability. However, it should be noted that the cost of nano-TiO2 is responsible for a severe increase in the cost of concrete mixtures.
Resumo:
Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000sodium sulfate aqueous two-phase systems containing 0.215 M NaCl and 0.5 M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000sodium sulfate0.215 M NaCl system, all in 0.01 M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solutesolvent interactions. The results obtained in the study show that solutesolvent interactions of nonionic organic compounds and proteins in polyethylene glycolsodium sulfate aqueous two-phase system change in the presence of NaCl additive.