12 resultados para brain evoked potentials
em Universidade do Minho
Resumo:
Background: Abnormalities in emotional prosody processing have been consistently reported in schizophrenia and are related to poor social outcomes. However, the role of stimulus complexity in abnormal emotional prosody processing is still unclear. Method: We recorded event-related potentials in 16 patients with chronic schizophrenia and 16 healthy controls to investigate: 1) the temporal course of emotional prosody processing; and 2) the relative contribution of prosodic and semantic cues in emotional prosody processing. Stimuli were prosodic single words presented in two conditions: with intelligible (semantic content condition—SCC) and unintelligible semantic content (pure prosody condition—PPC). Results: Relative to healthy controls, schizophrenia patients showed reduced P50 for happy PPC words, and reduced N100 for both neutral and emotional SCC words and for neutral PPC stimuli. Also, increased P200 was observed in schizophrenia for happy prosody in SCC only. Behavioral results revealed higher error rates in schizophrenia for angry prosody in SCC and for happy prosody in PPC. Conclusions: Together, these data further demonstrate the interactions between abnormal sensory processes and higher-order processes in bringing about emotional prosody processing dysfunction in schizophrenia. They further suggest that impaired emotional prosody processing is dependent on stimulus complexity.
Resumo:
With the present study we aimed to analyze the relationship between infants' behavior and their visual evoked-potential (VEPs) response. Specifically, we want to verify differences regarding the VEP response in sleeping and awake infants and if an association between VEP components, in both groups, with neurobehavioral outcome could be identified. To do so, thirty-two full-term and healthy infants, approximately 1-month of age, were assessed through a VEP unpatterned flashlight stimuli paradigm, offered in two different intensities, and were assessed using a neurobehavioral scale. However, only 18 infants have both assessments, and therefore, these is the total included in both analysis. Infants displayed a mature neurobehavioral outcome, expected for their age. We observed that P2 and N3 components were present in both sleeping and awake infants. Differences between intensities were found regarding the P2 amplitude, but only in awake infants. Regression analysis showed that N3 amplitude predicted an adequate social interactive and internal regulatory behavior in infants who were awake during the stimuli presentation. Taking into account that social orientation and regulatory behaviors are fundamental keys for social-like behavior in 1-month-old infants, this study provides an important approach for assessing physiological biomarkers (VEPs) and its relation with social behavior, very early in postnatal development. Moreover, we evidence the importance of the infant's state when studying differences regarding visual threshold processing and its association with behavioral outcome.
Resumo:
Recent studies have demonstrated the positive effects of musical training on the perception of vocally expressed emotion. This study investigated the effects of musical training on event-related potential (ERP) correlates of emotional prosody processing. Fourteen musicians and fourteen control subjects listened to 228 sentences with neutral semantic content, differing in prosody (one third with neutral, one third with happy and one third with angry intonation), with intelligible semantic content (semantic content condition--SCC) and unintelligible semantic content (pure prosody condition--PPC). Reduced P50 amplitude was found in musicians. A difference between SCC and PPC conditions was found in P50 and N100 amplitude in non-musicians only, and in P200 amplitude in musicians only. Furthermore, musicians were more accurate in recognizing angry prosody in PPC sentences. These findings suggest that auditory expertise characterizing extensive musical training may impact different stages of vocal emotional processing.
Resumo:
Lipocalin-2 (LCN2) is an acute-phase protein that, by binding to iron-loaded siderophores, acts as a potent bacteriostatic agent in the iron-depletion strategy of the immune system to control pathogens. The recent identification of a mammalian siderophore also suggests a physiological role for LCN2 in iron homeostasis, specifically in iron delivery to cells via a transferrin-independent mechanism. LCN2 participates, as well, in a variety of cellular processes, including cell proliferation, cell differentiation and apoptosis, and has been mostly found up-regulated in various tissues and under inflammatory states, being its expression regulated by several inducers. In the central nervous system less is known about the processes involving LCN2, namely by which cells it is produced/secreted, and its impact on cell proliferation and death, or in neuronal plasticity and behaviour. Importantly, LCN2 recently emerged as a potential clinical biomarker in multiple sclerosis and in ageing-related cognitive decline. Still, there are conflicting views on the role of LCN2 in pathophysiological processes, with some studies pointing to its neurodeleterious effects, while others indicate neuroprotection. Herein, these various perspectives are reviewed and a comprehensive and cohesive view of the general function of LCN2, particularly in the brain, is provided.
Resumo:
The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.
Resumo:
Objectives: The therapeutic effects of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation in patients with major depression have shown promising results; however, there is a lack of mechanistic studies using biological markers (BMs) as an outcome. Therefore, our aim was to review noninvasive brain stimulation trials in depression using BMs. Methods: The following databases were used for our systematic review: MEDLINE, Web of Science, Cochrane, and SCIELO. We examined articles published before November 2012 that used TMS and transcranial direct current stimulation as an intervention for depression and had BM as an outcome measure. The search was limited to human studies written in English. Results: Of 1234 potential articles, 52 articles were included. Only studies using TMS were found. Biological markers included immune and endocrine serum markers, neuroimaging techniques, and electrophysiological outcomes. In 12 articles (21.4%), end point BM measurements were not significantly associated with clinical outcomes. All studies reached significant results in the main clinical rating scales. Biological marker outcomes were used as predictors of response, to understand mechanisms of TMS, and as a surrogate of safety. Conclusions: Functional magnetic resonance imaging, single-photon emission computed tomography, positron emission tomography, magnetic resonance spectroscopy, cortical excitability, and brain-derived neurotrophic factor consistently showed positive results. Brain-derived neurotrophic factor was the best predictor of patients’ likeliness to respond. These initial results are promising; however, all studies investigating BMs are small, used heterogeneous samples, and did not take into account confounders such as age, sex, or family history. Based on our findings, we recommend further studies to validate BMs in noninvasive brain stimulation trials in MDD.
Resumo:
Tese de Doutoramento em Ciências da Saúde.
Resumo:
Tese de Doutoramento em Ciências da Saúde.
Resumo:
Inter-individual heterogeneity is evident in aging; education level is known to contribute for this heterogeneity. Using a cross-sectional study design and network inference applied to resting-state fMRI data, we show that aging was associated with decreased functional connectivity in a large cortical network. On the other hand, education level, as measured by years of formal education, produced an opposite effect on the long-term. These results demonstrate the increased brain efficiency in individuals with higher education level that may mitigate the impact of age on brain functional connectivity.
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Dissertação de mestrado em Medicinal Chemistry