25 resultados para bio-plastics producing microbes
em Universidade do Minho
Resumo:
Injectable biomaterials with in situ cross-linking reactions have been suggested to minimize the invasiveness associated with most implantation procedures. However, problems related with the rapid liquid-to-gel transition reaction can arise because it is difficult to predict the reliability of the reaction and its end products, as well as to mitigate cytotoxicity to the surrounding tissues. An alternative minimally invasive approach to deliver solid implants in vivo is based on injectable microparticles, which can be processed in vitro with high fidelity and reliability, while showing low cytotoxicity. Their delivery to the defect can be performed by injection through a small diameter syringe needle. We present a new methodology for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photo-reactive PEG-fibrinogen (PF) polymer was transported through a transparent injector exposed to light-irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data provided the cross-linking kinetics of each PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture prior to atomization. The partially polymerized drops fell into a gelation bath for further polymerization. The system was capable of producing cell-laden microparticles with high cellular viability, with an average diameter of between 88.1 µm to 347.1 µm and a dispersity of between 1.1 and 2.4, depending on the parameters chosen.
Resumo:
Cell encapsulation within hydrogel microspheres shows great promise in the field of tissue engineering and regenerative medicine (TERM). However, the assembling of microspheres as building blocks to produce complex tissues is a hard task because of their inability to place along length scales in space. We propose a proof-of-concept strategy to produce 3D constructs using cell encapsulated as building blocks by perfusion based LbL technique. This technique exploits the â bindingâ potential of multilayers apart from coating
Resumo:
Tendon tissue engineering (TE) requires tailoring scaffolds designs and properties to the anatomical and functional requirements of tendons located in different regions of the body. Cell sourcing is also of utmost importance as tendon cells are scarce. Recently, we have found that it is possible to direct the tenogenic differentiation of Amniotic fluid and Adipose tissue derived stem cells (hAFSCs and hASCs), and also that there are hASCs subpopulations that might be more prone to tenogenic differentiation. Nevertheless, biochemical stimulation may not be enough to develop functional TE substitutes for a tissue that is known to be highly dependent on mechanical loading.
Resumo:
With the constant need to improve and make the production of asphalt mixtures more sustainable, new production techniques have been developed, the implementation of which implies the correct knowledge of their performance. One of the most promising asphalt production techniques is the use of foamed bitumen. However, it is essential to understand how this binder will behave when subject to the expansion process. The loss of volume of the foamed bitumen could be translated by a decay curve, which allows to determine the ideal temperature and water content added to the bitumen in order to assure adequate conditions to the mix the bitumen with the aggregates. On the present study, a conventional 160/220 pen grade bitumen was tested by using different temperatures and water contents, and it was concluded that the optimum temperature for the production of foamed bitumen (with the studied bitumen) is 150 ºC, which corresponds to a viscosity of 0.1 Pa.s. The water content mostly influence the half-life of the bitumen foam, resulting in quicker volume reductions for higher water contents.
Resumo:
Nowadays the main honey producing countries require accurate labeling of honey before commercialization, including floral classification. Traditionally, this classification is made by melissopalynology analysis, an accurate but time-consuming task requiring laborious sample pre-treatment and high-skilled technicians. In this work the potential use of a potentiometric electronic tongue for pollinic assessment is evaluated, using monofloral and polyfloral honeys. The results showed that after splitting honeys according to color (white, amber and dark), the novel methodology enabled quantifying the relative percentage of the main pollens (Castanea sp., Echium sp., Erica sp., Eucaliptus sp., Lavandula sp., Prunus sp., Rubus sp. and Trifolium sp.). Multiple linear regression models were established for each type of pollen, based on the best sensors sub-sets selected using the simulated annealing algorithm. To minimize the overfitting risk, a repeated K-fold cross-validation procedure was implemented, ensuring that at least 10-20% of the honeys were used for internal validation. With this approach, a minimum average determination coefficient of 0.91 ± 0.15 was obtained. Also, the proposed technique enabled the correct classification of 92% and 100% of monofloral and polyfloral honeys, respectively. The quite satisfactory performance of the novel procedure for quantifying the relative pollen frequency may envisage its applicability for honey labeling and geographical origin identification. Nevertheless, this approach is not a full alternative to the traditional melissopalynologic analysis; it may be seen as a practical complementary tool for preliminary honey floral classification, leaving only problematic cases for pollinic evaluation.
Resumo:
Thermoplastic matrix composites are receiving increasing interest in last years. This is due to several advantageous properties and speed of processing of these materials as compared to their thermoset counterparts. Among thermoplastic composites, Long Fibre Thermoplastics (LFTs) have seen the fastest growth, mainly due to developments in the automotive sector. LFTs combine the (semi-)structural material properties of long (>1 cm) fibres, with the ease and speed of thermoplastic processing. This paper reports a study of a novel low-cost LFT technology and resulting composites. A patented powder-coating machine able to produce continuously pre-impregnated materials directly from fibre rovings and polymer powders was used to process glass-fibre reinforced polypropylene (GF/PP) towpregs. Such pre-impregnated materials were then chopped and used to make LFTs in a patented low-cost piston-blender developed by the Centre of Lightweight Structures, TUD-TNO, the Netherlands. The work allowed studying the most relevant towpreg production parameters and establishing the processing window needed to obtain a good quality GF/PP powder coated material. Finally, the processing window that allows producing LFTs of good quality in the piston-blender and the mechanical properties of final stamped GF/PP composite parts were also determined.
Resumo:
PhD Thesis in Bioengineering
Resumo:
The management of solid waste is a growing concern in many countries. Municipal solid waste is a major component of the total solid waste generated by society, and the composting of municipal solid waste has gained some attention even though a composting treatment for it is not yet widespread. It may not be realistic to replace large portions of these plastics with biodegradable materials, and it may be more important to separate plastics unsuitable for the composting process at the generating spots. However, for food packaging, there is still a great deal of interest in using biodegradable plastics that are difficult to sort at the generation spots. Under these circumstances, nanocomposites of biodegradable polymers as matrix and nanoparticles, that can be degraded along with organic wastes during composting could be a solution. Therefore, this chapter aims to give an overview on the biodegradability studies of bio-nanocomposites. It will focus on different polymers, nanocomposites containing different clay types and inorganic particles exposed under different environments.
Resumo:
Polymer based wicking structures were fabricated by sintering powders of polycarbonate (PC), ultra-high molecular weight polyethylene and polyamide 12, aiming at selecting a suitable material for an innovative electroencephalography (EEG) bio-electrode. Preliminary experiments showed that PC based wicks displayed the best mechanical properties, therefore more detailed studies were carried out with PC to evaluate the influence of powder granulometry and processing parameters (pressure, temperature and time) on the mechanical properties, porosity, mean pore radius and permeability of the wicks. It was concluded that the mechanical properties are significantly enhanced by increasing the processing time and pressure, although at the expense of a significant decrease of porosity and mean pore diameter (and thus permeability), particularly for the highest applied pressures (74kPa). However, a good compromise between porosity/permeability and mechanical properties could be obtained by sintering PC powders of particle sizes below 500μm at 165°C for 5min, upon an applied pressure of 56kPa. Moreover, PC proved to be chemically stable in contact with an EEG common used disinfectant. Thus, wicking structures with appropriate properties for the fabrication of reusable bio-electrodes could be fabricated from the sintering of PC powders.
Resumo:
[Extrat] Currently there is a growing interest in the development of eco-efficient bio-based packaging, being active, smart and intelligent packaging the most highlighted among various innovations. Intelligent packaging has the ability to detect and mark, in real time, changes that might occur within the package/in the food product. Their main purpose is to help the consumer decide whether to buy a certain food product, ensuring that when it is bought it has not suffered significant changes influencing its quality and safety. (...)
Resumo:
Proceedings da AUTEX 2015, Bucareste, Roménia.
Resumo:
The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.
Resumo:
This work intends to evaluate the mechanical properties of eco-composites reinforced with natural fiber fabrics in different fibrous arrangements, with a thermoset matrix of natural origin. When integrated by hand lay-up process, the composites obtained present excellent mechanical characteristics combined with environment friendly features, being able to be used in various industrial sectors.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.