10 resultados para big data.

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We are living in the era of Big Data. A time which is characterized by the continuous creation of vast amounts of data, originated from different sources, and with different formats. First, with the rise of the social networks and, more recently, with the advent of the Internet of Things (IoT), in which everyone and (eventually) everything is linked to the Internet, data with enormous potential for organizations is being continuously generated. In order to be more competitive, organizations want to access and explore all the richness that is present in those data. Indeed, Big Data is only as valuable as the insights organizations gather from it to make better decisions, which is the main goal of Business Intelligence. In this paper we describe an experiment in which data obtained from a NoSQL data source (database technology explicitly developed to deal with the specificities of Big Data) is used to feed a Business Intelligence solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desde 2009 que a Porto Editora elege em “infopédia.pt” a palavra que melhor representa os anos que terminam. Este trabalho apresenta uma forma alternativa a essa eleição, substituindo a votação dos cidadãos pela recolha de dados da rede social Twitter ao longo do ano, e procedendo à análise dos mesmos em substituição da votação. Assim sendo, foram recolhidos dados associados às dez palavras finalistas incluídas no conjunto da palavra do ano 2014, os quais foram armazenados em ambiente Hadoop para seguidamente e recorrendo a dois lexicons ser possível a classificação dos tweets. Os lexicons utilizados incluem, por um lado, a lista de palavras positivas e negativas e, por outro, as polaridades associadas às palavras em conjugação com o top vinte e cinco de emoticons utilizados no Twitter. Os resultados obtidos permitem identificar a palavra mais referida e o sentimento, positivo ou negativo associado à mesma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O aumento da quantidade de dados gerados que se tem verificado nos últimos anos e a que se tem vindo a dar o nome de Big Data levou a que a tecnologia relacional começasse a demonstrar algumas fragilidades no seu armazenamento e manuseamento o que levou ao aparecimento das bases de dados NoSQL. Estas estão divididas por quatro tipos distintos nomeadamente chave/valor, documentos, grafos e famílias de colunas. Este artigo é focado nas bases de dados do tipo column-based e nele serão analisados os dois sistemas deste tipo considerados mais relevantes: Cassandra e HBase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction of technologies in the workplace have led to a dramatic change. These changes have come with an increased capacity to gather data about one’s working performance (i.e. productivity), as well as the capacity to track one’s personal responses (i.e. emotional, physiological, etc.) to this changing workplace environment. This movement of self-monitoring or self-sensing using diverse types of wearable sensors combined with the use of computing has been identified as the Quantified-Self. Miniaturization of sensors, reduction in cost and a non-stop increase in the computer power capacity has led to a panacea of wearables and sensors to track and analyze all types of information. Utilized in the personal sphere to track information, a looming question remains, should employers use the information from the Quantified-Self to track their employees’ performance or well-being in the workplace and will this benefit employees? The aim of the present work is to layout the implications and challenges associated with the use of Quantified-Self information in the workplace. The Quantified-Self movement has enabled people to understand their personal life better by tracking multiple information and signals; such an approach could allow companies to gather knowledge on what drives productivity for their business and/or well-being of their employees. A discussion about the implications of this approach will cover 1) Monitoring health and well-being, 2) Oversight and safety, and 3) Mentoring and training. Challenges will address the question of 1) Privacy and Acceptability, 2) Scalability and 3) Creativity. Even though many questions remain regarding their use in the workplace, wearable technologies and Quantified-Self data in the workplace represent an exciting opportunity for the industry and health and safety practitioners who will be using them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação