3 resultados para antitumoral
em Universidade do Minho
Resumo:
Marine ecosystem can be considered a rather exploited source of natural substances with enormous bioactive potential. In Mexico macro-algae study remain forgotten for research and economic purposes besides the high amount of this resource along the west and east coast. For that reason the Bioferinery Group of the Autonomous University of Coahuila, have been studying the biorefinery concept in order to recover high value byproducts of Mexican brown macro-algae including polysaccharides and enzymes to be applied in food, pharmaceutical and energy industry. Brown macroalgae are an important source of fucoidan, alginate and laminarin which comprise a complex group of macromolecules with a wide range of important biological properties such as anticoagulant, antioxidant, antitumoral and antiviral and also as rich source of fermentable sugars for enzymes production. Additionally, specific enzymes able to degrade algae matrix (fucosidases, sulfatases, aliginases, etc) are important tools to establish structural characteristics and biological functions of these polysaccharides. The aims of the present work were the integral study of bioprocess for macroalgae biomass exploitation by the use of green technologies as hydrothermal extraction and solid state fermentation in order to produce polysaccharides and enzymes (fucoidan and fucoidan hydrolytic enzymes). This work comprises the use of the different bioprocess phases in order to produce high value products with lower time and wastes.
Resumo:
[Excerpt] The imidazole nucleus is present in a significant number of biomolecules and the inclusion of this moiety in organic scaffolds is considered an important synthetic strategy in drug discovery.[1] 5-Aminoimidazoles are interesting building blocks in medicinal chemistry since they are key components in many bioactive molecules and their derivatives showed a wide pharmacological potential as anticancer drugs.[1] The hydrazones constitute an important class of biological active drug molecules due to their wide range of pharmacological properties that include antitumoral activities.[2] Amidrazone derivatives could be considered very promising in the perspective of new drug discovery, because they are very effective as building blocks to obtain various heterocycles.[2,3] The α-hydrazononitriles are a special case of compounds belonging to the family of hydrazones that is less common in the literature, but has a great interest due to their pharmacological applications.[4] (...)
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Química)