6 resultados para and Multivariate Stochastic Control
em Universidade do Minho
Resumo:
Transforming growth factor beta (TGF-ß) plays an important role in carcinogenesis. Two polymorphisms in the TGF-ß1 gene (-509C/T and 869T/C) were described to influence susceptibility to gastric and breast cancers. The 869T/C polymorphism was also associated with overall survival in breast cancer patients. In the present study, we investigated the relevance of these TGF-ß1 polymorphism in glioma risk and prognosis. A case-control study that included 114 glioma patients and 138 cancer-free controls was performed. Single nucleotide polymorphisms (SNPs) were evaluated by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP). Univariate and multivariate logistic regression analyses were used to calculate odds ratio (OR) and 95 % confidence intervals (95 % CI). The influence of TGF-ß1 -509C/T and 869T/C polymorphisms on glioma patient survival was evaluated by a Cox regression model adjusted for patients' age and sex and represented in Kaplan-Meier curves. Our results demonstrated that TGF-ß1 gene polymorphisms -509C/T and 869T/C are not significantly associated with glioma risk. Survival analyses showed that the homozygous -509TT genotype associates with longer overall survival of glioblastoma (GBM) patients when compared with patients carrying CC + CT genotypes (OR, 2.41; 95 % CI, 1.06-5.50; p = 0.036). In addition, the homozygous 869CC genotype is associated with increased overall survival of GBM patients when compared with 869TT + TC genotypes (OR, 2.62; 95 % CI, 1.11-6.17; p = 0.027). In conclusion, this study suggests that TGF-ß1 -509C/T and 869T/C polymorphisms are not significantly associated with risk for developing gliomas but may be relevant prognostic biomarkers in GBM patients.
Resumo:
Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.
Resumo:
This study used event-related potentials to examine interactions between mood, sentence context, and semantic memory structure in schizophrenia. Seventeen male chronic schizophrenia and 15 healthy control subjects read sentence pairs after positive, negative, or neutral mood induction. Sentences ended with expected words (EW), within-category violations (WCV), or between-category violations (BCV). Across all moods, patients showed sensitivity to context indexed by reduced N400 to EW relative to both WCV and BCV. However, they did not show sensitivity to the semantic memory structure. N400 abnormalities were particularly enhanced under a negative mood in schizophrenia. These findings suggest abnormal interactions between mood, context processing, and connections within semantic memory in schizophrenia, and a specific role of negative mood in modulating semantic processes in this disease.
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.
Resumo:
This paper presents a model predictive current control applied to a proposed single-phase five-level active rectifier (FLAR). This current control strategy uses the discrete-time nature of the active rectifier to define its state in each sampling interval. Although the switching frequency is not constant, this current control strategy allows to follow the reference with low total harmonic distortion (THDF). The implementation of the active rectifier that was used to obtain the experimental results is described in detail along the paper, presenting the circuit topology, the principle of operation, the power theory, and the current control strategy. The experimental results confirm the robustness and good performance (with low current THDF and controlled output voltage) of the proposed single-phase FLAR operating with model predictive current control.