9 resultados para alpha and vector model
em Universidade do Minho
Resumo:
In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.
Resumo:
We report the observation of Higgs boson decays to WW∗ based on an excess over background of 6.1 standard deviations in the dilepton final state, where the Standard Model expectation is 5.8 standard deviations. Evidence for the vector-boson fusion (VBF) production process is obtained with a significance of 3.2 standard deviations. The results are obtained from a data sample corresponding to an integrated luminosity of 25 pb−1 from s√=7 and 8 TeV pp collisions recorded by the ATLAS detector at the LHC. For a Higgs boson mass of 125.36 GeV, the ratio of the measured value to the expected value of the total production cross section times branching fraction is 1.09+0.16−0.15 (stat.)+0.17−0.14 (syst.). The corresponding ratios for the gluon fusion and vector-boson fusion production mechanisms are 1.02±0.19 (stat.)+0.22−0.18 (syst.) and 1.27+0.44−0.40 (stat.)+0.30−0.21 (syst.), respectively. At s√=8 TeV, the total production cross sections are measured to be σ(gg→ H→WW∗)=4.6±0.9(stat.)+0.8−0.7(syst.)pb and σ(VBF H→WW∗)=0.51+0.17−0.15(stat.)+0.13−0.08(syst.)pb. The fiducial cross section is determined for the gluon-fusion process in exclusive final states with zero or one associated jet.
Resumo:
A search for Higgs boson production in association with a W or Z boson, in the H→ W W ∗ decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies s√=7 TeV and 8 TeV, corresponding to integrated luminosities of 4.5 fb−1 and 20.3 fb−1, respectively. The WH production mode is studied in two-lepton and three-lepton final states, while two- lepton and four-lepton final states are used to search for the ZH production mode. The observed significance, for the combined W H and ZH production, is 2.5 standard deviations while a significance of 0.9 standard deviations is expected in the Standard Model Higgs boson hypothesis. The ratio of the combined W H and ZH signal yield to the Standard Model expectation, μ V H , is found to be μ V H = 3.0 − 1.1 + 1.3 (stat.) − 0.7 + 1.0 (sys.) for the Higgs boson mass of 125.36 GeV. The W H and ZH production modes are also combined with the gluon fusion and vector boson fusion production modes studied in the H → W W ∗ → ℓνℓν decay channel, resulting in an overall observed significance of 6.5 standard deviations and μ ggF + VBF + VH = 1. 16 − 0.15 + 0.16 (stat.) − 0.15 + 0.18 (sys.). The results are interpreted in terms of scaling factors of the Higgs boson couplings to vector bosons (κ V ) and fermions (κ F ); the combined results are: |κ V | = 1.06 − 0.10 + 0.10 , |κ F | = 0. 85 − 0.20 + 0.26 .
Resumo:
Studies of the spin, parity and tensor couplings of the Higgs boson in the H→ZZ∗→4ℓ , H→WW∗→eνμν and H→γγ decay processes at the LHC are presented. The investigations are based on 25 fb−1 of pp collision data collected by the ATLAS experiment at s√=7 TeV and s√=8 TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers JP=0+, is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9% confidence level. Using the H→ZZ∗→4ℓ and H→WW∗→eνμν decays, the tensor structure of the HVV interaction in the spin-0 hypothesis is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived.
Resumo:
Curcumin and caffeine (used as lipophilic and hydrophilic model compounds, respectively) were successfully encapsulated in lactoferrin-glycomacropeptide (Lf-GMP) nanohydrogels by thermal gelation showing high encapsulation efficiencies (>90 %). FTIR spectroscopy confirmed the encapsulation of bioactive compounds in Lf-GMP nanohydrogels and revealed that according to the encapsulated compound different interactions occur with the nanohydrogel matrix. The successful encapsulation of bioactive compounds in Lf-GMP nanohydrogels was also confirmed by fluorescence measurements and confocal laser scanning microscopy. TEM images showed that loaded nanohydrogels maintain their spherical shape with sizes of 112 and 126 nm for curcumin and caffeine encapsulated in Lf-GMP nanohydrogels, respectively; in both cases a polydispersity of 0.2 was obtained. The release mechanisms of bioactive compounds through Lf-GMP nanohydrogels were evaluated at pH 2 and pH 7, by fitting the Linear Superimposition Model to the experimental data. The bioactive compounds release was found to be pH-dependent: at pH 2, relaxation is the governing phenomenon for curcumin and caffeine compounds and at pH 7 Ficks diffusion is the main mechanism of caffeine release while curcumin was not released through Lf-GMP nanohydrogels.
Avaliação do desempenho de fundos de investimento de obrigações: evidência para o mercado Brasileiro
Resumo:
Dissertação de mestrado em Finanças
Resumo:
The study of the interaction between hair filaments and formulations or peptides is of utmost importance in fields like cosmetic research. Keratin intermediate filaments structure is not fully described, limiting the molecular dynamics (MD) studies in this field although its high potential to improve the area. We developed a computational model of a truncated protofibril, simulated its behavior in alcoholic based formulations and with one peptide. The simulations showed a strong interaction between the benzyl alcohol molecules of the formulations and the model, leading to the disorganization of the keratin chains, which regress with the removal of the alcohol molecules. This behavior can explain the increase of peptide uptake in hair shafts evidenced in fluorescence microscopy pictures. The model developed is valid to computationally reproduce the interaction between hair and alcoholic formulations and provide a robust base for new MD studies about hair properties. It is shown that the MD simulations can improve hair cosmetic research, improving the uptake of a compound of interest.
Resumo:
This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3fb−1 of pp collisions collected at s√=8 TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing b-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter--nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter.
Resumo:
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of s√=8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT>120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT>150 GeV and EmissT>700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with large extra spatial dimensions, pair production of weakly interacting dark matter candidates, and production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.