3 resultados para aldosterone pathway
em Universidade do Minho
Resumo:
Adolescents’ perceptions of parenting and family relationships are important variables for identifying mechanisms involved in how children acquire values and how these values are transmitted through families. In a sample of 515 adolescents, we investigated whether perceptions of the quality of parental practices would predict adolescents’ collectivist and individualist values. We hypothesized that perceived quality of family relations would mediate the relationship between the quality of parental practices and collectivist values but not of individualist values. The results of structural equation modeling suggested that perception of the quality of parental practices predicted adolescents’ both collectivist and individualist values. The predicted mediation effect was found for collectivist values, but not for individualist values. The results point to different functions of parenting and family relations on value acquisition. Implications for practice, such as the development and implementation of interventions to improve the formation of adolescents’ values by enhancing the quality of parenting and family relationships are discussed.
Resumo:
The Optic atrophy 1 protein (OPA1) is a key element in the dynamics and morphology of mitochondria. We demonstrated that the absence of I?B kinase-a, which is a key element of the nonclassical NF-?B pathway, has an impact on the mitochondrial network morphology and OPA1 expression. In contrast, the absence of NF-?B essential modulator (NEMO) or I?B kinase-ß, both of which are essential for the canonical NF-?B pathway, has no impact on mitochondrial dynamics. Whereas Parkin has been reported to positively regulate the expression of OPA1 through NEMO, herein we found that PARK2 overexpression did not modify the expression of OPA1. PARK2 expression reduced the levels of Bax, and it prevented stress-induced cell death only in Bak-deficient mouse embryonic fibroblast cells. Collectively, our results point out a role of the nonclassical NF-?B pathway in the regulation of mitochondrial dynamics and OPA1 expression.
Resumo:
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.