3 resultados para addition solving
em Universidade do Minho
Resumo:
The Closest Vector Problem (CVP) and the Shortest Vector Problem (SVP) are prime problems in lattice-based cryptanalysis, since they underpin the security of many lattice-based cryptosystems. Despite the importance of these problems, there are only a few CVP-solvers publicly available, and their scalability was never studied. This paper presents a scalable implementation of an enumeration-based CVP-solver for multi-cores, which can be easily adapted to solve the SVP. In particular, it achieves super-linear speedups in some instances on up to 8 cores and almost linear speedups on 16 cores when solving the CVP on a 50-dimensional lattice. Our results show that enumeration-based CVP-solvers can be parallelized as effectively as enumeration-based solvers for the SVP, based on a comparison with a state of the art SVP-solver. In addition, we show that we can optimize the SVP variant of our solver in such a way that it becomes 35%-60% faster than the fastest enumeration-based SVP-solver to date.
Resumo:
The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.
Resumo:
Firefly Algorithm is a recent swarm intelligence method, inspired by the social behavior of fireflies, based on their flashing and attraction characteristics [1, 2]. In this paper, we analyze the implementation of a dynamic penalty approach combined with the Firefly algorithm for solving constrained global optimization problems. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.