10 resultados para abstract optimization problems

em Universidade do Minho


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In previous work we have presented a model capable of generating human-like movements for a dual arm-hand robot involved in human-robot cooperative tasks. However, the focus was on the generation of reach-to-grasp and reach-to-regrasp bimanual movements and no synchrony in timing was taken into account. In this paper we extend the previous model in order to accomplish bimanual manipulation tasks by synchronously moving both arms and hands of an anthropomorphic robotic system. Specifically, the new extended model has been designed for two different tasks with different degrees of difficulty. Numerical results were obtained by the implementation of the IPOPT solver embedded in our MATLAB simulator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previously we have presented a model for generating human-like arm and hand movements on an unimanual anthropomorphic robot involved in human-robot collaboration tasks. The present paper aims to extend our model in order to address the generation of human-like bimanual movement sequences which are challenged by scenarios cluttered with obstacles. Movement planning involves large scale nonlinear constrained optimization problems which are solved using the IPOPT solver. Simulation studies show that the model generates feasible and realistic hand trajectories for action sequences involving the two hands. The computational costs involved in the planning allow for real-time human robot-interaction. A qualitative analysis reveals that the movements of the robot exhibit basic characteristics of human movements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we propose an extension of the firefly algorithm (FA) to multi-objective optimization. FA is a swarm intelligence optimization algorithm inspired by the flashing behavior of fireflies at night that is capable of computing global solutions to continuous optimization problems. Our proposal relies on a fitness assignment scheme that gives lower fitness values to the positions of fireflies that correspond to non-dominated points with smaller aggregation of objective function distances to the minimum values. Furthermore, FA randomness is based on the spread metric to reduce the gaps between consecutive non-dominated solutions. The obtained results from the preliminary computational experiments show that our proposal gives a dense and well distributed approximated Pareto front with a large number of points.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Firefly Algorithm is a recent swarm intelligence method, inspired by the social behavior of fireflies, based on their flashing and attraction characteristics [1, 2]. In this paper, we analyze the implementation of a dynamic penalty approach combined with the Firefly algorithm for solving constrained global optimization problems. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational intelligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two illustrative Traffic Engineering methods are described, allowing to attain routing configurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a comparison between using global and local optimization techniques for solving the problem of generating human-like arm and hand movements for an anthropomorphic dual arm robot is made. Although the objective function involved in each optimization problem is convex, there is no evidence that the admissible regions of these problems are convex sets. For the sequence of movements for which the numerical tests were done there were no significant differences between the optimal solutions obtained using the global and the local techniques. This suggests that the optimal solution obtained using the local solver is indeed a global solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Electromagnetism-like (EM) algorithm is a population- based stochastic global optimization algorithm that uses an attraction- repulsion mechanism to move sample points towards the optimal. In this paper, an implementation of the EM algorithm in the Matlab en- vironment as a useful function for practitioners and for those who want to experiment a new global optimization solver is proposed. A set of benchmark problems are solved in order to evaluate the performance of the implemented method when compared with other stochastic methods available in the Matlab environment. The results con rm that our imple- mentation is a competitive alternative both in term of numerical results and performance. Finally, a case study based on a parameter estimation problem of a biology system shows that the EM implementation could be applied with promising results in the control optimization area.