9 resultados para Xanthophyll cycle Mehler-peroxidase reaction
em Universidade do Minho
Resumo:
Abstract This study aimed to investigate the role of ascorbate peroxidase (APX), guaiacol peroxidase (GPX), polysaccharides, and protein contents associated with the early events of postharvest physiological deterioration (PPD) in cassava roots. Increases in APX and GPX activity, as well as total protein contents occurred from 3 to 5 days of storage and were correlated with the delay of PPD. Cassava samples stained with periodic acid-Schiff (PAS) highlighted the presence of starch and cellulose. Degradation of starch granules during PPD was also detected. Slight metachromatic reaction with toluidine blue is indicative of increasing of acidic polysaccharides and may play an important role in PPD delay. Principal component analysis (PCA) classified samples according to their levels of enzymatic activity based on the decision tree model which showed GPX and total protein amounts to be correlated with PPD. The Oriental (ORI) cultivar was more susceptible to PPD.
Resumo:
Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.
Resumo:
AÂ Zero waste management is believed to be one of methods to gain sustainability in urban areas. Take advantages of resources as enough as the needs and process it until the last part to be wasted is a contribution to take care the environment for the next generation. Reduce, reuse, and recycle are three simplesactivities which are until nowadays consideredas the back bone of zero waste. Jonggolgreen city is a new urban area in Indonesia with a 100 ha of surface area zoned as education tourism area. It is an independent area with pure natural resources of water, air, and land to be managed and protected. It is planned as green city through zero waste management since2013. In this preliminary period, a monitoring tool is being prepared by applying a Life Cycle Analysis (LCA) for urban areas [1]. This paper will present an explanatory assessment ofthe zero waste management for Jonggolgreen city. The existing situation will be examined through LCA and afterwards,the new program and the proposed green design to gain the next level of zero waste will be discussed. The purpose is to track the persistence of the commitment and the perception of the necessary innovationsin order to achieve the ideal behavior level of LCA.
Resumo:
Accepted Manuscript
Resumo:
In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations
Resumo:
The building sector is one of the Europeâ s main energy consumer, making buildings an important target for a wiser energy use, improving indoor comfort conditions and reducing the energy consumption. To achieve the European Union targets for energy consumption and carbon reductions it is crucial to act in new, but also in existing buildings, which constitute the majority of the building stock. In existing buildings, the significant improvement of their efficiency requires important investments. Therefore, costs are a major concern in the decision making process and the analysis of the cost effectiveness of the interventions is an important path in the guidance for the selection of the different renovation scenarios. The Portuguese thermal legislation considers the simple payback method for the calculations of the time for the return of the investment. However, this method does not take into consideration inflation, cash flows and cost of capital, as well as the future costs of energy and the building elements lifetime as it happens in a life cycle cost analysis. In order to understand the impact of the economic analysis method used in the choice of the renovation measures, a case study has been analysed using simple payback calculations and life cycle costs analysis. Overall results show that less far-reaching renovation measures are indicated when using the simple payback calculations which may be leading to solutions less cost-effective in a long run perspective.
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
[Excerpt] Introduction: There has been a considerable amount of controversy about the use of manometric methods to measure catalase activity. As Maehly and Chance point out in their excellent review] the advantages of these methods is "... that they can be used for any kind of biological material, and purification of the enzyme is not required. The assay is independent of small amounts of peroxidase activity. It is fairly simple to perform, it is rapid and it can be adapted to continuous reading of the reaction". A variety of drawbacks are also listed by the same authors, viz, the inactivation of the enzyme under the experimental conditions and the time lag before a constant rate of oxygen evolution is reached. [...]
Resumo:
Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/ polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.