20 resultados para Wood-decaying fungi
em Universidade do Minho
Resumo:
Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas
Resumo:
The force distribution inside a dovetail joint is complex. Wood is simultaneously loaded in different directions in the several connected surfaces. The analytical solutions available for the analysis of the behavior of those carpentry joints rely on the mechanical properties of wood. In particular, the stiffness properties of wood under compression are crucial for the forces equilibrium. Simulations showed that the stiffness values considered in each of the springs normally assumed in the analytical models, have great influence in the bearing capacity and stiffness of the dovetail joints, with important consequence on the stress distribution over the overall structure. In a wide experimental campaign, the properties under compression of the most common wood species of existing timber structures have been determined. Then, a solved example of a dovetail joint is presented assuming different wood species and the corresponding strength and stiffness properties values obtained in the tests.
Resumo:
A search for a heavy, CP-odd Higgs boson, A, decaying into a Z boson and a 125 GeV Higgs boson, h, with the ATLAS detector at the LHC is presented. The search uses proton–proton collision data at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3 fb−1. Decays of CP-even h bosons to ττ or bb pairs with the Z boson decaying to electron or muon pairs are considered, as well as h→bbh→bb decays with the Z boson decaying to neutrinos. No evidence for the production of an A boson in these channels is found and the 95% confidence level upper limits derived for View the MathML sourceσ(gg→A)×BR(A→Zh)×BR(h→ff¯) are 0.098–0.013 pb for f=τf=τ and 0.57–0.014 pb for f=bf=b in a range of mA=220–1000 GeVmA=220–1000 GeV. The results are combined and interpreted in the context of two-Higgs-doublet models.
Resumo:
A search is presented for the direct pair production of a chargino and a neutralino pp→χ~±1χ~02, where the chargino decays to the lightest neutralino and the W boson, χ~±1→χ~01(W±→ℓ±ν), while the neutralino decays to the lightest neutralino and the 125 GeV Higgs boson, χ~02→χ~01(h→bb/γγ/ℓ±νqq). The final states considered for the search have large missing transverse momentum, an isolated electron or muon, and one of the following: either two jets identified as originating from bottom quarks, or two photons, or a second electron or muon with the same electric charge. The analysis is based on 20.3 fb−1 of s√=8 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with the Standard Model expectations, and limits are set in the context of a simplified supersymmetric model.
Resumo:
Results of a search for decays of massive particles to fully hadronic final states are presented. This search uses 20.3 fb−1 of data collected by the ATLAS detector in s√=8TeV proton--proton collisions at the LHC. Signatures based on high jet multiplicities without requirements on the missing transverse momentum are used to search for R-parity-violating supersymmetric gluino pair production with subsequent decays to quarks. The analysis is performed using a requirement on the number of jets, in combination with separate requirements on the number of b-tagged jets, as well as a topological observable formed from the scalar sum of the mass values of large-radius jets in the event. Results are interpreted in the context of all possible branching ratios of direct gluino decays to various quark flavors. No significant deviation is observed from the expected Standard Model backgrounds estimated using jet-counting as well as data-driven templates of the total-jet-mass spectra. Gluino pair decays to ten or more quarks via intermediate neutralinos are excluded for a gluino with mass mg~<1TeV for a neutralino mass mχ~01=500GeV. Direct gluino decays to six quarks are excluded for mg~<917GeV for light-flavor final states, and results for various flavor hypotheses are presented.
Resumo:
In some regions of Brazil, especially where the water is scarce, drinking water is stored in water storage tanks. This practice gives the consumer the guarantee of available water. The water storage conditions such as the exposure to hot weather when the tanks are on rooftops allow the development of microorganisms and microbial biofilms which can deteriorate the water quality and increase the risk to human health [1,2]. This study describes the filamentous fungi (FF) detected in free water and biofilms in drinking water storage tanks in Recife - Pernambuco, Brazil. Five sampling times in triplicate were performed at two distinct points. Colony-forming units (CFU) of FF fungi were determined with 0.45 µm filtration membranes using peptone glucose rose Bengal agar (PGRBA). From the 30 samples analysed a total of 1136 CFU were obtained. The water biofilms were collected from samplers consisting of polyethylene coupons, previously installed in the reservoirs. These coupons were transferred to PGRBA plates and incubated using with the same conditions described for free FF. For the in situ detection of FF in biofilms the Calcofluor White staining technique was used. This procedure demonstrated FF forming biofilms on the surfaces of the coupons. Brazilian legislation does not define limits for FF in drinking water. However considering the potential risk of fungal contamination, the data obtained in this study will contribute to developing future quantitative and qualitative parameters for the presence of fungi in drinking water distribution systems in Brazil. [1] HageskaL, G, Lima, N, Skaar, I. The study of fungi in drinking water. Mycological Research, 113, 2009, 165-172. [2] Skaar I, Hageskal G. Fungi in Drinking Water. In.: Paterson RRM, Lima N. (Eds.) Molecular Biology of Food and Water Borne Mycotoxigenic and Mycotic Fungi. CRC Press, Taylor & Francis Group, Boca Raton, 2015, 597-606.
Resumo:
A search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at s√=8 TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb−1. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-468 GeV are excluded.
Resumo:
This Letter presents a search for a heavy neutral particle decaying into an opposite-sign different-flavor dilepton pair, e±μ∓, e±τ∓, or μ±τ∓ using 20.3 fb−1 of pp collision data at s√=8 TeV collected by the ATLAS detector at the LHC. The numbers of observed candidate events are compatible with the Standard Model expectations. Limits are set on the cross section of new phenomena in two scenarios: the production of ν~τ in R-parity-violating supersymmetric models and the production of a lepton-flavor-violating Z′ vector boson.
Resumo:
A search for the Standard Model Higgs boson produced in association with a pair of top quarks, tt¯H, is presented. The analysis uses 20.3 fb−1 of pp collision data at s√ = 8 TeV, collected with the ATLAS detector at the Large Hadron Collider during 2012. The search is designed for the H to bb¯ decay mode and uses events containing one or two electrons or muons. In order to improve the sensitivity of the search, events are categorised according to their jet and b-tagged jet multiplicities. A neural network is used to discriminate between signal and background events, the latter being dominated by tt¯+jets production. In the single-lepton channel, variables calculated using a matrix element method are included as inputs to the neural network to improve discrimination of the irreducible tt¯+bb¯ background. No significant excess of events above the background expectation is found and an observed (expected) limit of 3.4 (2.2) times the Standard Model cross section is obtained at 95% confidence level. The ratio of the measured tt¯H signal cross section to the Standard Model expectation is found to be μ=1.5±1.1 assuming a Higgs boson mass of 125 GeV.
Resumo:
A search for the decay to a pair of new particles of either the 125 GeV Higgs boson (h) or a second CP-even Higgs boson (H) is presented. The dataset correspods to an integrated luminosity of 20.3 fb−1 of pp collisions at s√= 8 TeV recorded by the ATLAS experiment at the LHC in 2012. The search was done in the context of the next-to-minimal supersymmetric standard model, in which the new particles are the lightest neutral pseudoscalar Higgs bosons (a). One of the two a bosons is required to decay to two muons while the other is required to decay to two τ-leptons. No significant excess is observed above the expected backgrounds in the dimuon invariant mass range from 3.7 GeV to 50 GeV. Upper limits are placed on the production of h→aa relative to the Standard Model gg→h production, assuming no coupling of the a boson to quarks. The most stringent limit is placed at 3.5% for ma= 3.75 GeV. Upper limits are also placed on the production cross section of H→aa from 2.33 pb to 0.72 pb, for fixed ma = 5 GeV with mH ranging from 100 GeV to 500 GeV.
Resumo:
The results of a search for charged Higgs bosons decaying to a τ lepton and a neutrino, H±→τ±ν, are presented. The analysis is based on 19.5 fb−1 of proton--proton collision data at s√=8 TeV collected by the ATLAS experiment at the Large Hadron Collider. Charged Higgs bosons are searched for in events consistent with top-quark pair production or in associated production with a top quark. The final state is characterised by the presence of a hadronic τ decay, missing transverse momentum, b-tagged jets, a hadronically decaying W boson, and the absence of any isolated electrons or muons with high transverse momenta. The data are consistent with the expected background from Standard Model processes. A statistical analysis leads to 95% confidence-level upper limits on the product of branching ratios B(t→bH±)×B(H±→τ±ν), between 0.23% and 1.3% for charged Higgs boson masses in the range 80--160 GeV. It also leads to 95% confidence-level upper limits on the production cross section times branching ratio, σ(pp→tH±+X)×B(H±→τ±ν), between 0.76 pb and 4.5 fb, for charged Higgs boson masses ranging from 180 GeV to 1000 GeV. In the context of different scenarios of the Minimal Supersymmetric Standard Model, these results exclude nearly all values of tanβ above one for charged Higgs boson masses between 80 GeV and 160 GeV, and exclude a region of parameter space with high tanβ for H± masses between 200 GeV and 250 GeV.
Resumo:
A search for high-mass resonances decaying into τ+τ− final states using proton-proton collisions at s√=8 TeV produced by the Large Hadron Collider is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 19.5-20.3 fb−1. No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of Z′ resonances decaying into τ+τ− pairs as a function of the resonance mass. As a result, Z′ bosons of the Sequential Standard Model with masses less than 2.02 TeV are excluded at 95% credibility. The impact of the fermionic couplings on the Z′ acceptance is investigated and limits are also placed on a Z′ model that exhibits enhanced couplings to third-generation fermions.
Resumo:
The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3 fb−1 of data collected in proton--proton collisions at s√ = 8 TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeV to 900 GeV, and a long-lived neutral particle mass from 10 GeV to 150 GeV.
Resumo:
A search is presented for a narrow diboson resonances decaying to WW or WZ in the final state where one W boson decays leptonically (to an electron or a muon plus a neutrino) and the other W/Z boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb−1 of pp collisions at s√ = 8 TeV collected by the ATLAS detector at the LHC. No evidence for resonant diboson production is observed, and resonance masses below 700 GeV and 1490 GeV are excluded at 95% confidence level for the spin-2 Randall-Sundrum bulk graviton G∗ with coupling constant of 1.0 and the extended gauge model W′ boson respectively.
Resumo:
This paper describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from pp collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy s√ = 8 TeV. The performance of these algorithms is measured in most cases with Z decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb−1. An uncertainty on the offline reconstructed tau energy scale of 2% to 4%, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured with a precision of 2.5% for hadronically decaying tau leptons with one associated track, and of 4% for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than 20 GeV. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is measured with a precision of 2% to 8%, depending on the transverse energy. The performance of the tau algorithms, both offline and at the trigger level, is found to be stable with respect to the number of concurrent proton--proton interactions and has supported a variety of physics results using hadronically decaying tau leptons at ATLAS.