3 resultados para Wood, Geoffrey B.: Sampling methods for multiresource forest inventory

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a renewable energy source, the use of forest biomass for electricity generation is advantageous in comparison with fossil fuels, however the activity of forest biomass power plants causes adverse impacts, affecting particularly neighbouring communities. The main objective of this study is to estimate the effects of the activity of forest biomass power plants on the welfare of two groups of stakeholders, namely local residents and the general population and we apply two stated preference methods: contingent valuation and discrete choice experiments, respectively. The former method was applied to estimate the minimum compensation residents of neighbouring communities of two forest biomass power plants in Portugal would be willing to accept. The latter method was applied among the general population to estimate their willingness to pay to avoid specific environmental impacts. The results show that the presence of the selected facilities affects individuals’ well-being. On the other hand, in the discrete choice experiments conducted among the general population all impacts considered were significant determinants of respondents’ welfare levels. The results of this study stress the importance of performing an equity analysis of the welfare effects on different groups of stakeholders from the installation of forest biomass power plants, as their effects on welfare are location and impact specific. Policy makers should take into account the views of all stakeholders either directly or indirectly involved when deciding crucial issues regarding the sitting of new forest biomass power plants, in order to achieve an efficient and equitable outcome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.