48 resultados para Weathering of buildings
em Universidade do Minho
Resumo:
This paper proposes a methodology for improvement of energy efficiency in buildings through the innovative simultaneous incorporation of three distinct phase change materials (here termed as hybrid PCM) in plastering mortars for façade walls. The thermal performance of a hybrid PCM mortar was experimentally evaluated by comparing the behaviour of a prototype test cell (including hybrid PCM plastering mortar) subjected to realistic daily temperature profiles, with the behaviour of a similar prototype test cell, in which no PCM was added. A numerical simulation model was employed (using ANSYS-FLUENT) to validate the capacity of simulating temperature evolution within the prototype containing hybrid PCM, as well as to understand the contribution of hybrid PCM to energy efficiency. Incorporation of hybrid PCM into plastering mortars was found to have the potential to significantly reduce heating/cooling temperature demands for maintaining the interior temperature within comfort levels when compared to normal mortars (without PCM), or even mortars comprising a single type of PCM.
Resumo:
Architectural design is often associated with aesthetics and style, but it is also very important to building performance and sustainability. There are some studies associating architectural design to the choice for materials from sustainable sources, to indoor air quality, to energy efficiency and productivity. This article takes a step further to analyse how the use of efficient interior design techniques can impact the habitable space in order to improve building sustainability in land use. Smart interior design, a current trend related to the use of efficient and flexible furniture and movable walls in tiny or compact apartments, is analysed. A building with a standard design is used as a case study reference building and compared to a proposed theoretical design alternative using smart interior design techniques. In order to correctly assess sustainability performance, a quantifiable and verified method is used. Results showed that the use of smart interior design techniques can greatly reduce buildingsâ impact on the environment.
Resumo:
The number of houses damaged or destroyed after disasters is frequently large, and re-housing of homeless people is one of the most important tasks of reconstruction programmes. Reconstruction works often last long and during that time, it is essential to provide victims with the minimum conditions to live with dignity, privacy, and protection. This research intends to demonstrate the crucial role of temporary accommodation buildings to provide spaces where people can live and gradually resume their life until they have a permanent house. The study also aims to identify the main problems of temporary accommodation strategies and to discuss some principles and guidelines in order to reach better design solutions. It is found that temporary accommodation is an issue that goes beyond the simple provision of buildings, since the whole space for temporary settlement is important. Likewise, temporary accommodation is a process that should start before a disaster occurs, as a preventive pre-planning. In spite of being temporary constructions, these housing buildings are one of the most important elements to provide in emergency scenarios, contributing for better recovery and reconstruction actions.
Resumo:
Nowadays, the sustainability of buildings has an extreme importance. This concept goes towards the European aims of the Program Horizon 2020, which concerns about the reduction of the environmental impacts through such aspects as the energy efficiency and renewable technologies, among others. Sustainability is an extremely broad concept but, in this work, it is intended to include the concept of sustainability in buildings. Within the concept that aims the integration of environmental, social and economic levels towards the preservation of the planet and the integrity of the users, there are, currently, several types of tools of environmental certification that are applicable to the construction industry (LEED, BREEAM, DGNB, SBTool, among others). Within this context, it is highlighted the tool SBTool (Sustainable Building Tool) that is employed in several countries and can be subject to review in institutions of basic education, which are the base for the formation of the critical masses and for the development of a country. The main aim of this research is to select indicators that can be used in a methodology for sustainability assessment (SBTool) of school buildings in Portugal and in Brazil. In order to achieve it, it will also be analyzed other methodologies that already incorporate parameters directly related with the schools environment, such as BREEAM or LEED.
Resumo:
The Portuguese housing sector experienced a significant growth throughout the 20th century, particularly in the last quarter, after the democratic revolution in 1974. In fact, the number of buildings built between 1970 and 1990 is more than one third of the buildings actually existing in Portugal. Therefore most of them were built before the publication of the first regulation concerning the energy efficiency in buildings. Regarding this scenario, it would be expected that rehabilitation activities would represent most of the current construction activities. However, given some remaining barriers from old social policies, this situation is not observed; actually building retrofitting is the least significant sector, accentuating the degradation level of major part of the Portuguese housing stock. Several studies show that the main problems are found in the buildings envelope elements, such as roofs and façades. Based on this context, the aim of this paper is to introduce some examples of building retrofitting systems that, adapted to the Portuguese main needs and requirements may represent sustainable solutions to overcome the identified needs of Portuguese buildings' envelope.
Resumo:
Nowadays cities are facing several environmental problems due to the population migration to urban areas, which is causing urban sprawl. This way, it is very important to define solutions to improve Land Use Efficiency (LUE). This article proposes the use of community buildings features as a solution to increase land use efficiency. Community buildings consider the design of shared building spaces to reduce the floor area of buildings. This work tests the performance of some case-study buildings regarding LUE to analyse its possible pros and cons. A quantifiable method is used to assess buildingsâ LUE, which considers the number of occupants, the gross floor area, the functional area, the implantation area and the allotment area. Buildings with higher values for this index have reduced environmental impacts because they use less construction materials, produce less construction and demolition wastes and require less energy for building operation. The results showed that the use of community building features can increase Land Use Efficiency of buildings.
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
Currently we are witnessing a huge concern of society with the parameters of comfort of the buildings and the energetic consumptions. It is known that there is a huge consumption of non-renewable sources of energy. Thus, it is urgent to develop and explore ways to take advantage of renewable sources of energy by improving the energy efficiency of buildings. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. However, the incorporation of phase change materials in mortars modifies its characteristics. The main purpose of this study was mechanical and thermal characterization of mortars with incorporation of PCM in mortars based in different binders. The binders studied were aerial lime, hydraulic lime, gypsum and cement. For each type of binder a reference composition (0% PCM) and a composition with incorporation of 40% of PCM were developed. It was possible to observe that the incorporation of PCM in mortars caused differences in properties such as workability, compressive strength, flexural strength and adhesion, however leads to an improvement of thermal behavior.
Resumo:
Considering that the future of the construction sector in most European countries will mainly lie in the renovation of the existing building stock, in the next coming years thousands of energy inefficient buildings will need renovation to force EU member states to reach the EU 2020 targets and implement the Energy Performance of Buildings Directive (EPBD). Seeing the actual crisis in the construction sector as an opportunity, this work aims to develop a concept for prefabricated customizable sandwich panels for the multifunctional renovation of buildings, focusing also on technological innovation. More than a conventional solution, this proposal aims to combine sustainable and recycled building materials, available technologies and systems with advanced design and manufacturing tools within an integrated and mass-customizable approach of advanced building renovation prefabricated solutions. The adoption of these new proposed solutions would improve the living standards of the inhabitants of our cities, reducing energy inefficiency and other existing construction/renovation problems, while enabling some advanced features like the incorporation of technical modules that could even monitor the building performance during its full lifetime and the living conditions of its occupants.
Resumo:
Timber frame buildings are well known as an efficient seismic resistant structure popular all over the world not only due to their seismic performance, but also to their low cost and the strength they offer. These constructions still exist today and it is important to be able to preserve them, so a better knowledge on their behaviour is sought. Furthermore, historic technologies could be used even in modern constructions to build seismic resistant buildings using more natural materials with lesser costs. A great rehabilitation effort is being carried out on this type of buildings, as their neglect has led to decay or their change in use and alterations to the structure has led to the need to retrofit such buildings; only recently studies on their behaviour have become available and only a few of them address the issue of possible strengthening techniques for this kind of walls. In this scope, an innovative retrofitting technique (near surface mounted steel flat bars) is proposed and validated on traditional timber frame walls based on an extensive experimental program. The results of the static cyclic tests on distinct wall typologies retrofitted with the NSM technique are herein presented and discussed in detail. The main features on deformation, lateral stiffness, lateral resistance and seismic performance indexes are analysed
Resumo:
Buildings are one of the major consumers of energy in Europe. This makes them an important target when aiming to reduce the energy consumptions and carbon emissions. The majority of the European building stock has already some decades and so it needs renovation in order to keep its functionality. Taking advantage of these interventions, the energy performance of the buildings may also be improved. In Portugal the renovation techniques, both regarding energy efficiency measures as well as measures for the use of renewable energy sources, are normally planned at the building scale. It is important to explore the possibility of having large scale interventions, has it has been done in other countries, namely at neighbourhood scale with district energy system in order to optimize the results in terms of costs and environmental impact.
Resumo:
Recently, environmental architecture and sustainable construction has been ranked on top of the worldâ s interests. Making use of natural resources helps in reducing energy consumption and costs associated with the operation of buildings. The current architectural approaches and designs in Palestine are far away from environmental concepts, copying and simulating abroad approaches, without taking into account the culture, climate, and inhabitant's needs. On the contrast, vernacular architecture has achieved environmental concepts and has given suitable approaches and samples - without any need to simulate or copy - which come from people and land. This paper discusses how the Palestinian socio-cultural context shaped the residential vernacular architecture in Palestine, taking the old city of Nablus as a case-study. The research concept depends on analysing and trying to understand the effect of the socio-cultural context on vernacular architecture and trying to reach some rules or understandings of how it works in order to reach a modern environmental dwelling that is suitable to this concept. The research method goes through analysing study cases from the traditional architecture models and the Nablus city is selected as a case study. This analytical and qualitative method can lead to deep understanding for how to benefit from vernacular architecture in Palestine in finding the future environmental residential construction. One of the main findings of this research is to set general and special rules for building sustainable buildings in Palestine from the socio-cultural point view, in order to be a reference for designers, stakeholders, ministry of planning, and municipalities.
Resumo:
Dissertação de International Master in Sustainable Built Environment
Resumo:
The evolution of the construction caused a need to use more effective equipments, capable of meeting the increasingly demanding deadlines for the completion of works. In this context, the safety and efficiency of equipment have become key aspects in order to optimize the execution time of the works, as well as reducing labor costs and loss of materials. With the evolution of construction and construction processes, cranes have come to represent a signal of the construction of buildings, revealing to be, in most of the cases, the main equipment of construction sites. Currently, some engineers revels some apprehension regarding the use and handling of cranes which is natural and acceptable, since an equipment failure can lead to serious or fatal accidents. The factors affecting safety management of the cranes in construction sites were investigated, identified, classified and evaluated according to their degree of importance, through interviews with representatives of the general contractors of a set of selected construction sites.
Resumo:
O objetivo deste artigo é verificar a influência da geometria urbana na intensidade de ilhas de calor noturnas com uso de uma ferramenta computacional desenvolvida como extensão de um SIG. O método deste trabalho está dividido em três principais etapas: desenvolvimento da ferramenta, calibração do modelo e simulação de cenários hipotéticos com diferentes geometrias urbanas. Um modelo simplificado que relaciona as intensidades máximas de ilha de calor urbana (ICUmáx) com a geometria urbana foi incorporado à subrotina de cálculo e, posteriormente, adaptado para fornecer resultados mais aproximados à realidade de duas cidades brasileiras, as quais serviram de base para a calibração do modelo. A comparação entre dados reais e simulados mostraram uma diferença no aumento da ICUmáx em função da relação H/W e da faixa de comprimento de rugosidade (Z0). Com a ferramenta já calibrada, foi realizada uma simulação de diferentes cenários urbanos, demonstrando que o modelo simplificado original subestima valores de ICUmáx para as configurações de cânions urbanos de Z0 < 2,0 e superestima valores de ICUmáx para as configurações de cânions urbanos de Z0 ≥ 2,0. Além disso, este estudo traz como contribuição à verificação de que cânions urbanos com maiores áreas de fachadas e com alturas de edificações mais heterogêneas resultam em ICUmáx menores em relação aos cânions mais homogêneos e com maiores áreas médias ocupadas pelas edificações, para um mesmo valor de relação H/W. Essa diferença pode ser explicada pelos diferentes efeitos na turbulência dos ventos e nas áreas sombreadas provocados pela geometria urbana.