4 resultados para Wearable Computing, sistemi Hands-Free, riconoscimento vocale, framework, Android

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the problem of privacy-preserving proofs on authenticated data, where a party receives data from a trusted source and is requested to prove computations over the data to third parties in a correct and private way, i.e., the third party learns no information on the data but is still assured that the claimed proof is valid. Our work particularly focuses on the challenging requirement that the third party should be able to verify the validity with respect to the specific data authenticated by the source — even without having access to that source. This problem is motivated by various scenarios emerging from several application areas such as wearable computing, smart metering, or general business-to-business interactions. Furthermore, these applications also demand any meaningful solution to satisfy additional properties related to usability and scalability. In this paper, we formalize the above three-party model, discuss concrete application scenarios, and then we design, build, and evaluate ADSNARK, a nearly practical system for proving arbitrary computations over authenticated data in a privacy-preserving manner. ADSNARK improves significantly over state-of-the-art solutions for this model. For instance, compared to corresponding solutions based on Pinocchio (Oakland’13), ADSNARK achieves up to 25× improvement in proof-computation time and a 20× reduction in prover storage space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work was supported by FCT (Fundação para a Ciência e Tecnologia) within Project Scope (UID/CEC/00319/2013), by LIP (Laboratório de Instrumentação e Física Experimental de Partículas) and by Project Search-ON2 (NORTE-07-0162- FEDER-000086), co-funded by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction of technologies in the workplace have led to a dramatic change. These changes have come with an increased capacity to gather data about one’s working performance (i.e. productivity), as well as the capacity to track one’s personal responses (i.e. emotional, physiological, etc.) to this changing workplace environment. This movement of self-monitoring or self-sensing using diverse types of wearable sensors combined with the use of computing has been identified as the Quantified-Self. Miniaturization of sensors, reduction in cost and a non-stop increase in the computer power capacity has led to a panacea of wearables and sensors to track and analyze all types of information. Utilized in the personal sphere to track information, a looming question remains, should employers use the information from the Quantified-Self to track their employees’ performance or well-being in the workplace and will this benefit employees? The aim of the present work is to layout the implications and challenges associated with the use of Quantified-Self information in the workplace. The Quantified-Self movement has enabled people to understand their personal life better by tracking multiple information and signals; such an approach could allow companies to gather knowledge on what drives productivity for their business and/or well-being of their employees. A discussion about the implications of this approach will cover 1) Monitoring health and well-being, 2) Oversight and safety, and 3) Mentoring and training. Challenges will address the question of 1) Privacy and Acceptability, 2) Scalability and 3) Creativity. Even though many questions remain regarding their use in the workplace, wearable technologies and Quantified-Self data in the workplace represent an exciting opportunity for the industry and health and safety practitioners who will be using them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doctoral Thesis in Information Systems and Technologies Area of Information Systems and Technology