14 resultados para Voltage disturbance detection and classification

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ochratoxin A (OTA) is a very well known mycotoxin found in several food commodities for which maximum limits are being discussed in EC in other to produce appropriate regulations. OTA is one of several ochratoxins produced by Aspergillus and Penicillium species. All the compounds in this group have a molecular structure very similar to OTA and some were already isolated from natural substrates. Several of these compounds such as ochratoxin , methyl and ethyl ester of ochratoxin A, 4-R and S-hydroxyochratoxin A, 10-hydroxyochratoxin A and ochratoxin A open lactone are commercially unavailable. However, they can be easily synthesized through OTA modification. With the main objective of its application on further research works, OTA production, isolation and purification has been optimised from an A. alliaceus strain grown on wheat medium. Synthesis and purification of some OTA derivatives has been achieved and an HPLC method for their detection was optimised. Data about their production by several species of Aspergillus will be presented. The toxicological properties of ochratoxins are still not very clear and a future EC safety limit for OTA will depend on e.g., a better clarification of its carcinogenity. Could OTA derivatives play a role here?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300 nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia de Eletrónica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the â stem cell nicheâ , the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural mineral waters (still), effervescent natural mineral waters (sparkling) and aromatized waters with fruit-flavors (still or sparkling) are an emerging market. In this work, the capability of a potentiometric electronic tongue, comprised with lipid polymeric membranes, to quantitatively estimate routinely quality physicochemical parameters (pH and conductivity) as well as to qualitatively classify water samples according to the type of water was evaluated. The study showed that a linear discriminant model, based on 21 sensors selected by the simulated annealing algorithm, could correctly classify 100 % of the water samples (leave-one out cross-validation). This potential was further demonstrated by applying a repeated K-fold cross-validation (guaranteeing that at least 15 % of independent samples were only used for internal-validation) for which 96 % of correct classifications were attained. The satisfactory recognition performance of the E-tongue could be attributed to the pH, conductivity, sugars and organic acids contents of the studied waters, which turned out in significant differences of sweetness perception indexes and total acid flavor. Moreover, the E-tongue combined with multivariate linear regression models, based on sub-sets of sensors selected by the simulated annealing algorithm, could accurately estimate waters pH (25 sensors: R 2 equal to 0.99 and 0.97 for leave-one-out or repeated K-folds cross-validation) and conductivity (23 sensors: R 2 equal to 0.997 and 0.99 for leave-one-out or repeated K-folds cross-validation). So, the overall satisfactory results achieved, allow envisaging a potential future application of electronic tongue devices for bottled water analysis and classification.