3 resultados para Vogel, Ezra F
em Universidade do Minho
Resumo:
Natural deep eutectic solvents (NADES) have shown to be promising sustainable media for a wide range of applications. Nonetheless, very limited data is available on the properties of these solvents. A more comprehensive body of data on NADES is required for a deeper understanding of these solvents at molecular level, which will undoubtedly foster the development of new applications. NADES based on choline chloride, organic acids, amino acids and sugars were prepared, and their density, thermal behavior, conductivity and polarity were assessed, for different NADES compositions. The NADES studied can be stable up to 170 °C, depending on their composition. The thermal characterization revealed that all the NADES are glass formers and some, after water removal, exhibit crystallinity. The morphological characterization of the crystallizable materials was performed using polarized optical microscopy which also provided evidence of homogeneity/phase separation. The conductivity of the NADES was also assessed from 0 to 40 °C. The more polar, organic acid-based NADES presented the highest conductivities. The conductivity dependence on temperature was well described by the Vogelâ Fulcherâ Tammann equation for some of the NADES studied.
Resumo:
Type 2 diabetes (T2D) has been suggested to be a risk factor for multiple myeloma (MM), but the relationship between the two traits is still not well understood. The aims of this study were to evaluate whether 58 genome-wide-association-studies (GWAS)-identified common variants for T2D influence the risk of developing MM and to determine whether predictive models built with these variants might help to predict the disease risk. We conducted a case–control study including 1420 MM patients and 1858 controls ascertained through the International Multiple Myeloma (IMMEnSE) consortium. Subjects carrying the KCNQ1rs2237892T allele or the CDKN2A-2Brs2383208G/G, IGF1rs35767T/T and MADDrs7944584T/T genotypes had a significantly increased risk of MM (odds ratio (OR)=1.32–2.13) whereas those carrying the KCNJ11rs5215C, KCNJ11rs5219T and THADArs7578597C alleles or the FTOrs8050136A/A and LTArs1041981C/C genotypes showed a significantly decreased risk of developing the disease (OR=0.76–0.85). Interestingly, a prediction model including those T2D-related variants associated with the risk of MM showed a significantly improved discriminatory ability to predict the disease when compared to a model without genetic information (area under the curve (AUC)=0.645 vs AUC=0.629; P=4.05×10-06). A gender-stratified analysis also revealed a significant gender effect modification for ADAM30rs2641348 and NOTCH2rs10923931 variants (Pinteraction=0.001 and 0.0004, respectively). Men carrying the ADAM30rs2641348C and NOTCH2rs10923931T alleles had a significantly decreased risk of MM whereas an opposite but not significant effect was observed in women (ORM=0.71 and ORM=0.66 vs ORW=1.22 and ORW=1.15, respectively). These results suggest that TD2-related variants may influence the risk of developing MM and their genotyping might help to improve MM risk prediction models.
Resumo:
When combined at particular molar fractions, sugars, aminoacids or organic acids a present a high melting point depression, becoming liquids at room temperature. These are called Natural Deep Eutectic Solvents – NADES and are envisaged to play a major role on the chemical engineering processes of the future. Nonetheless, there is a significant lack of knowledge of its fundamental and basic properties, which is hindering their industrial applications. For this reason it is important to extend the knowledge on these systems, boosting their application development [1]. In this work, we have developed and characterized NADES based on choline chloride, organic acids, amino acids and sugars. Their density, thermal behavior, conductivity and polarity were assessed for different compositions. The conductivity was measured from 0 to 40 °C and the temperature effect was well described by the Vogel-Fulcher-Tammann equation. The morphological characterization of the crystallizable materials was done by polarized optical microscopy that provided also evidence of homogeneity/phase separation. Additionally, the rheological and thermodynamic properties of the NADES and the effect of water content were also studied. The results show these systems have Newtonian behavior and present significant viscosity decrease with temperature and water content, due to increase on the molecular mobility. The anhydrous systems present viscosities that range from higher than 1000Pa.s at 20°C to less than 1Pa.s at 70°C. DSC characterization confirms that for water content as high as 1:1:1 molar ratio, the mixture retains its single phase behavior. The results obtained demonstrate that the NADES properties can be finely tunned by careful selection of its constituents. NADES present the necessary properties for use as extraction solvents. They can be prepared from inexpensive raw materials and tailored for the selective extraction of target molecules. The data produced in this work is hereafter importance for the selection of the most promising candidates avoiding a time consuming and expensive trial and error phase providing also data for the development of models able to predict their properties and the mechanisms that allow the formation of the deep eutectic mixtures.