4 resultados para Visual-system Model
em Universidade do Minho
Resumo:
The Childhood protection is a subject with high value for the society, but, the Child Abuse cases are difficult to identify. The process from suspicious to accusation is very difficult to achieve. It must configure very strong evidences. Typically, Health Care services deal with these cases from the beginning where there are evidences based on the diagnosis, but they aren’t enough to promote the accusation. Besides that, this subject it’s highly sensitive because there are legal aspects to deal with such as: the patient privacy, paternity issues, medical confidentiality, among others. We propose a Child Abuses critical knowledge monitor system model that addresses this problem. This decision support system is implemented with a multiple scientific domains: to capture of tokens from clinical documents from multiple sources; a topic model approach to identify the topics of the documents; knowledge management through the use of ontologies to support the critical knowledge sensibility concepts and relations such as: symptoms, behaviors, among other evidences in order to match with the topics inferred from the clinical documents and then alert and log when clinical evidences are present. Based on these alerts clinical personnel could analyze the situation and take the appropriate procedures.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.
Resumo:
This paper proposes and validates a model-driven software engineering technique for spreadsheets. The technique that we envision builds on the embedding of spreadsheet models under a widely used spreadsheet system. This means that we enable the creation and evolution of spreadsheet models under a spreadsheet system. More precisely, we embed ClassSheets, a visual language with a syntax similar to the one offered by common spreadsheets, that was created with the aim of specifying spreadsheets. Our embedding allows models and their conforming instances to be developed under the same environment. In practice, this convenient environment enhances evolution steps at the model level while the corresponding instance is automatically co-evolved.Finally,wehave designed and conducted an empirical study with human users in order to assess our technique in production environments. The results of this study are promising and suggest that productivity gains are realizable under our model-driven spreadsheet development setting.