53 resultados para Viscoelastic Bi-Materials
em Universidade do Minho
Resumo:
Understanding the behavior of c omplex composite materials using mixing procedures is fundamental in several industrial processes. For instance, polymer composites are usually manufactured using dispersion of fillers in polymer melt matrices. The success of the filler dispersion depends both on the complex flow patterns generated and on the polymer melt rheological behavior. Consequently, the availability of a numerical tool that allow to model both fluid and particle would be very useful to increase the process insight. Nowadays there ar e computational tools that allow modeling the behavior of filled systems, taking into account both the behavior of the fluid (Computational Rheology) and the particles (Discrete Element Method). One example is the DPMFoam solver of the OpenFOAM ® framework where the averaged volume fraction momentum and mass conservation equations are used to describe the fluid (continuous phase) rheology, and the Newton’s second law of motion is used to compute the particles (discrete phase) movement. In this work the refer red solver is extended to take into account the elasticity of the polymer melts for the continuous phase. The solver capabilities will be illustrated by studying the effect of the fluid rheology on the filler dispersion, taking into account different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to evaluate the relevance of considering the fluid complex rheology for the prediction of the composites morphology
Resumo:
The experimental evaluation of viscoelastic properties of concrete is traditionally made upon creep tests that consist in the application of sustained loads either in compression or in tension. This kind of testing demands for specially devised rigs and requires careful monitoring of the evolution of strains, whereas assuring proper load constancy. The characterization of creep behaviour at early ages offers additional challenges due to the strong variations in viscoelastic behaviour of concrete during such stages, demanding for several testing ages to be assessed. The present research work aims to assist in reducing efforts for continuous assessment of viscoelastic properties of concrete at early ages, by application of a dynamic testing technique inspired in methodologies used in polymer science: Dynamic Mechanical Analyses. This paper briefly explains the principles of the proposed methodology and exhibits the first results obtained in a pilot application. The results are promising enough to encourage further developments.
Resumo:
COST TU 1404
Resumo:
COST Action TU 1404
Resumo:
COST TU 1404
Resumo:
The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energy consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.
Resumo:
In this research, five types of polymer repair materials were selected for investigation of the influence of sample shape, deformation rate and test temperature on the mechanical properties determined with an uniaxial tensile test. The results showed the clear effect of measurement conditions on tensile strength, elongation and modulus of elasticity. The highest tensile strength and modulus of elasticity were exhibited by epoxy resin for the filling of concrete cracks, which achieved 1% elongation. The lowest coefficient of dispersion characterized the results of tensile test carried out using dumbbell samples at a deformation rate of 50 mm/min. The effect of temperature varied with the material type.
Resumo:
This paper assesses the feasibility of impregnation/encasement of phase change materials (PCMs) in lightweight aggregates (LWAs). An impregnation process was adopted to carry out the encasement study of two different PCMs in four different LWAs. The leakage of the impregnated/encased PCMs was studied when they were submitted to freeze/thawing and oven drying tests, separately. The results confirmed that, the impregnation/encasement method is effective with respect to the large thermal energy storage density, and can be suitable for applications were PCMs cannot be incorporated directly such as asphalt road pavements.
Resumo:
The innovative Horizon 2020 program sponsored by the European Union (EU) aims to promote and develop processes of waste integration in construction materials. However, several potential health hazards caused by building materials have been identified and, there-fore, there is an ongoing need to develop new recycling methods for hazardous wastes and effi-cient barriers in order to prevent toxic releases from the new construction solutions with wastes. This paper presents an overview that focus on two main aspects: the identification of the health risks related to radioactivity and heavy metals present in building materials and identification of these toxic substances in new construction solutions that contain recycled wastes. Different waste materials were selected and distinct methodologies of toxicity evaluation are presented to analyse the potential hazardous, the feasibility of using those wastes and the achievement of op-timal construction solutions involving wastes.
Resumo:
The use of sustainable solutions in construction is not just an option, but is increasingly becoming a need of the Society. Thus, nowadays the recycling of waste materials is a growing technology that needs to be continuously improved, namely by researching new solutions for waste valorisation and by increasing the amount of wastes reused. In the paving industry, the reuse of reclaimed asphalt (RA) is becoming common practice, but needs further research work. Thus, this study aims to increase the incorporation of RA and other waste materials in the production of recycled asphalt mixtures in order to improve their mechanical, environmental and economic performance. Recycled mixtures with 50% RA were analysed in this study, including: i) RA selection, preparation and characterization; ii) incorporation of other waste materials as binder additives or modifiers, like used motor oil (UMO) and waste high density polyethylene (HDPE); iii) production of different mixtures (without additives; with UMO; with UMO and HDPE) and comparison of their performance in order to assess the main advantages of each solution. With this study it was concluded that up to 7.5 % of UMO and 4.0 % of HDPE can be used in a new modified binder for asphalt mixtures with 50 % of RA, which have excellent properties concerning the rutting with WTS = 0.02 mm/103 cycles, the fatigue resistance with ε6 = 160.4, and water sensitivity with an ITSR of 81.9 %.
Resumo:
Since concrete is the most widely utilized construction material, several solutions are currently being developed and investigated for enhancing the sustainability of cementitious materials. One of these solutions is based on producing Recycled Concrete Aggregates (RCA) from existing concrete members resulting by either industrial processes or demolitions of existing structures as a whole. Moreover, waste resulting from industrial processes other than the building construction (i.e., tire recycling, production of steel, powders resulting from other depuration processes) are also being considered as possible low-impact constituents for producing structural concrete and Fiber-Reinforced Cementitious Composites (FRCC). Furthermore, the use of natural fibers is another option for producing environmentally-friendly and cost-effective materials, depending on the local availability of raw materials. To promote the use of concretes partially composed of recycled constituents, their influence on the mechanical and durability performance of these concretes have to be deeply investigated and correlated. This was the main goal of the EnCoRe Project (www.encore-fp7.unisa.it), a EU-funded initiative, whose activities and main findings are summarized in this paper.
Resumo:
By taking advantage of the appropriate use of cement and polymer based materials and advanced computational tools, a pre-fabricated affordable house was built in a modular system. Modular system refers to the complete structure that is built-up by assembling pre-fabricated sandwich panels composed of steel fibre reinforced self-compacting concrete (SFRSCC) outer layers that are connected by innovative glass fibre reinforced polymer (GFRP) connectors, resulting in a panel with adequate structural, acoustic, and thermal insulation properties. The modular house was prepared for a typical family of six members, but its living area can be easily increased by assembling other pre-fabricated elements. The speed of construction and the cost of the constructive elements make these houses competitive when compared to traditional solutions. In this paper the relevant research subjacent to this project (LEGOUSE) is briefly described, as well as the construction process of the built real scale prototype.
Resumo:
This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.
Resumo:
This study investigates the role of the polymeric binder on the properties and performance of an intumescent coating. Waterborne resins of different types (vinylic, acrylic, and styrene-acrylic) were incorporated in an intumescent paint formulation, and characterized extensively in terms of thermal degradation behavior, intumescence thickness, and thermal insulation. Thermal microscopy images of charred foam development provided further information on the particular performance of each type of coating upon heating. The best foam expansion and heat protection results were obtained with the vinyl binders. Rheological measurements showed a complex evolution of the viscoelastic characteristics of the materials with temperature. As an example, the vinyl binders unexpectedly hardened significantly after thermal degradation. The values of storage moduli obtained at the onset of foam blowing (melamine decomposition) were used to explain different intumescence expansion behaviors.
Resumo:
A substantial part of the world building heritage has been performed by earthen building. The durability of this existing heritage and mainly of the new buildings built with earth is particularly conditioned by the erosion caused by water action, especially in countries with high levels of rainfall. This research aims to contribute to the increase of knowledge about the ancient building techniques that provide enhanced durability. It is possible to analyse the ancestral practices used to protect the earth material from the water action in order to understand how the old earthen buildings were preserved over the centuries, resisting to harsh weather conditions. Among these techniques are: the incorporation of biopolymers (such as oils or fats from animal or vegetable origin); the addition of some minerals; and the earth stabilization with lime. However, this knowledge seems to be forgotten, probably due to the prejudice related to earthen constructions, which several times are associated with a poor building. This research also focuses on the study of new methods of earth stabilization with lime and biopolymers, adapting the ancient knowledge to improve the durability related to the water action. Therefore, alternative solutions can be obtained to improve the performance of earthen buildings, mainly the resistance of the material in the presence of water, reducing its permeability to water. In addition, with the proposed solutions it is possible to obtain good levels of water vapour permeability, one of the major advantages of the construction with earth.