3 resultados para Viroc – agglomerate of wood and cement
em Universidade do Minho
Resumo:
Premature degradation of ordinary Portland cement (OPC) concrete infrastructures is a current and serious problem with overwhelming costs amounting to several trillion dollars. The use of concrete surface treatments with waterproofing materials to prevent the access of aggressive substances is an important way of enhancing concrete durability. The most common surface treatments use polymeric resins based on epoxy, silicone (siloxane), acrylics, polyurethanes or polymethacrylate. However, epoxy resins have low resistance to ultraviolet radiation while polyurethanes are sensitive to high alkalinity environments. Geopolymers constitute a group of materials with high resistance to chemical attack that could also be used for coating of concrete infrastructures exposed to harsh chemical environments. This article presents results of an experimental investigation on the resistance to chemical attack (by sulfuric and nitric acid) of several materials: OPC concrete, high performance concrete (HPC), epoxy resin, acrylic painting and a fly ash based geopolymeric mortar. Three types of acids, each with high concentrations of 10%, 20% and 30%, were used to simulate long term degradation by chemical attack. The results show that the epoxy resin had the best resistance to chemical attack, irrespective of the acid type and acid concentration.
Resumo:
This study deals with the characterization of masonry mortars produced with different binders and sands. Several properties of the mortars were determined, like consistence, compressive and flexural strengths, shrinkage and fracture energy. By varying the type of binder (Portland cement, hydrated lime and hydraulic lime) and the type of sand (natural or artificial), it was possible to draw some conclusions about the influence of the composition on mortars properties. The results showed that the use of Portland cement makes the achievement of high strength classes easier. This was due to the slower hardening of lime compared with cement. The results of fracture energy tests showed much higher values for artificial sand mortars when compared with natural sand ones. This is due to the higher roughness of artificial sand particles which provided better adhesion between sand and binder.
Resumo:
Corrosion of the steel reinforced concrete elements is one of the common pathologies that limits the long-term performance of urban infrastructures. This problem causes the loss of structural serviceability by decreasing the concrete-steel bond strength and reducing the cross section of the reinforcements. The present study introduces a new system for developing free-corrosion resistance prefabricated manhole covers for applications in the aggressive environments, i.e. wastewater collector systems, sewer systems, stormwater systems, etc. Fibre reinforced cement composites were applied in this system in order to suppress the corrodible steel mesh and maintain the structural ductility as well. Application of fibre reinforced polymer (FRP) system is adopted as the additional solution for increasing the load carrying capacity of these elements without concerns about corrosion. The effectiveness of the applied strategy in developing the manhole covers in terms of load carrying capacity and failure mode is evaluated in this research. Furthermore, this paper discusses a FEM-based simulation, aiming to address the possibility of calibrating the constitutive model parameters related to fracture modes I and II.