7 resultados para UTERINE GLANDS
em Universidade do Minho
Resumo:
CRSLS MIS Case Reports from SLS.org.
Resumo:
Total laparoscopic hysterectomy: impact of body mass index on outcomes
Resumo:
Previous studies on monocarboxylate transporters expression in prostate cancer (PCa) have shown that monocarboxylate transporter 2 (MCT2) was clearly overexpressed in prostate malignant glands, pointing it out as a putative biomarker for PCa. However, its localization and possible role in PCa cells remained unclear. In this study, we demonstrate that MCT2 localizes mainly at peroxisomes in PCa cells and is able to take advantage of the peroxisomal transport machinery by interacting with Pex19. We have also shown an increase in MCT2 expression from non-malignant to malignant cells that was directly correlated with its peroxisomal localization. Upon analysis of the expression of several peroxisomal ß-oxidation proteins in PIN lesions and PCa cells from a large variety of human prostate samples, we suggest that MCT2 presence at peroxisomes is related to an increase in ß -oxidation levels which may be crucial for malignant transformation. Our results present novel evidence that may not only contribute to the study of PCa development mechanisms but also pinpoint novel targets for cancer therapy.
Resumo:
Silk fibroin is a commonly available natural biopolymer produced in specialized glands of arthropods, such as silkworms or spiders, scorpions, mites, bees and flies. This biopolymer has a long history of use in textile production and also as sutures or treatment of skin wounds. Silk fibroin has been increasingly explored in other areas of biomedical science where we can find a higher morphological diversification of silk biomaterials like films, electrospun fibers, 3D porous scaffolds or nanoparticles. In recent years it has been demonstrated that fibroin is an excellent material for active components in optical devices. This new application opens the way towards the development of multifunctional optoelectronic devices, which in perspective can be made fully biocompatible and eventually bioresorbable. Moreover, fibroin can be added to other biocomponents in order to modify the biomaterial properties leading to optimized and total different functions. These improvements can go from higher cell adhesion in tissue engineering or enhanced optical transparency, smoothness or flexibility in optoelectronic devices. The tuning and completely understanding of silk fibers physicochemical properties and interaction with other elements are of crucial importance for the improvement of already existent silk-based materials and the basis for the development of new products.
Resumo:
Silk fibroin (SF) is a commonly available natural biopolymer produced in specialized glands of arthropods, with a long history of use in textile production and also in health cares. The exceptional intrinsic properties of these fibers, such as self-assembly, machinability, biocompatibility, biodegradation or non-toxicity, offer a wide range of exciting opportunities [1]. It has long been recognized that silk can be a rich source of inspiration for designing new materials with tailored properties, enhanced performance and high added value for targeted applications, opening exciting new prospects in the domain of materials science and related technological fields, including bio-friendly integration, miniaturization and multifunctionalization. In recent years it has been demonstrated that fibroin is an excellent material for active components in optics and photonics devices. Progress in new technological fields such as optics, photonics and electronics are emerging [2,3]. The incorporation of polymer electrolytes as components of various devices (advanced batteries, smart windows, displays and supercapacitors) offers significant advantages with respect to traditional electrolytes, including enhanced reliability and improved safety. SF films are particularly attractive in this context. They have near-perfect transparency across the VIS range, surface flatness (together with outstanding mechanical robustness), ability to replicate patterned substrates and their thickness may be easily tailored from a few nanometers to hundreds of micrometers through spin-casting of a silk solution into subtract. Moreover, fibroin can be added to other biocomponents or salts in order to modify the biomaterial properties leading to optimized and total different functions. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating SF films doped with lithium triflate and lithium tetrafluoroborate (LiTFSI and LiBF4, respectively) as electrolyte and WO3 as cathodic electrochromic layer, are extremely encouraging. Aiming to evaluate the performance of the ion conducting SF membranes doped with LiTFSI and LiBF4 (SF-Li), small ECDs with glass/ITO/WO3/SF-Li/CeO2-TiO2/ITO/glass configuration were assembled and characterized. The device exhibited, after 4500 cycles, the insertion of charge at -3.0 V reached –1.1 mC.cm-2 in 15 s. After 4500 cycles the window glass-staining, glass/ITO/WO3/Fibrin-Li salts electrolyte/CeO2-TiO2/ITO/glass configuration was reversible and featured a T 8 % at λ = 686 nm
Resumo:
Objective: We aimed to critically evaluate the importance of quality control (QC) and quality assurance (QA) strategies in the routine work of uterine cervix cytology. Study Design: We revised all the main principles of QC and QA that are already being implemented worldwide and then discussed the positive aspects and limitations of these as well as proposing alternatives when pertinent. Results: A literature review was introduced after highlighting the main historical revisions, and then a critical evaluation of the principal innovations in screening programmes was conducted, with recommendations being postulated. Conclusions: Based on the analysed data, QC and QA are two essential arms that support the quality of a screening programme.
Resumo:
O bebé humano, quando nasce, trás consigo uma diversidade de competências que lhe garantem uma pré adaptação e a sua sobrevivência no meio extrauterino. Este estudo tem como objectivo avaliar a preferência e a habituação do recém-nascido pela face/voz da mãe vs. uma pessoa estranha, bem como a identificação de variáveis que possam influenciar estas competências. A amostra, constituída por 50 bebés (com 1 a 5 dias de vida), foi avaliada através do paradigma da “preferência e habituação pela face/voz da mãe vs estranha” - uma situação experimental que envolve a participação da mãe e de duas figuras estranhas ao bebé, com o objectivo de avaliar o tempo que o bebé olha para cada pessoa, em três fases diferentes: 1) preferência, 2) habituação e 3) pós-habituação. Os resultados mostram a preferência pela face/voz da mãe, em detrimento da pessoa estranha. Porém, observa-se que, da fase de preferência para a fase de pós habituação, o tempo que o bebé olha para a mãe diminui e aumenta o tempo que olha para a figura estranha. Algumas características dos bebés (e.g., índice ponderal > 2.50) e das mães (e.g., coabitação, emprego) surgem relacionadas com resultados mais favoráveis (e.g., maior preferência pela face/voz da mãe na fase de preferência do que de pós-habituação e uma mais rápida resposta de habituação ao estímulo materno). Concluímos que, logo nos primeiros dias de vida, são observadas diferenças no comportamento dos recém-nascidos com a mãe e com uma estranha, o que pode condicionar o desenvolvimento do bebé e uma interacção adequada com a mãe.