33 resultados para UNIFORM ULTIMATE BOUNDEDNESS
em Universidade do Minho
Resumo:
The weak fixation of biomaterials within the bone structure is one of the major reasons of implants failures. Calcium phosphate (CaP) coatings are used in bone tissue engineering to improve implant osseointegration by enhancing cellular adhesion, proliferation and differentiation, leading to a tight and stable junction between implant and host bone. It has also been observed that materials compatible with bone tissue either have a CaP coating or develop such a calcified surface upon implantation. Thus, the development of bioactive coatings becomes essential for further improvement of integration with the surrounding tissue. However, most of current applied CaP coatings methods (e.g. physical vapor deposition), cannot be applied to complex shapes and porous implants, provide poor structural control over the coating and prevent incorporation of bioactive organic compounds (e.g. antibiotics, growth factors) because of the used harsh processing conditions. Layer-by-layer (LbL) is a versatile technology that permits the building-up of multilayered polyelectrolyte films in mild conditions based on the alternate adsorption of cationic and anionic elements that can integrate bioactive compounds. As it is recognized in natureâ s biomineralization process the presence of an organic template to induce mineral deposition, this work investigate a ion based biomimetic method where all the process is based on LbL methodology made of weak natural-origin polyelectrolytes. A nanostructured multilayer component, with 5 or 10 bilayers, was produced initially using chitosan and chondroitin sulphate polyelectrolyte biopolymers, which possess similarities with the extracellular matrix and good biocompatibility. The multilayers are then rinsed with a sequential passing of solutions containing Ca2+ and PO43- ions. The formation of CaP over the polyelectrolyte multilayers was confirmed by QCM-D, SEM and EDX. The outcomes show that 10 polyelectrolyte bilayer condition behaved as a better site for initiating the formation of CaP as the precipitation occur at earlier stages than in 5 polyelectrolyte bilayers one. This denotes that higher number of bilayers could hold the CaP crystals more efficiently. This work achieved uniform coatings that can be applied to any surface with access to the liquid media in a low-temperature method, which potentiates the manufacture of effective bioactive biomaterials with great potential in orthopedic applications.
Resumo:
The regeneration of soft biological tissues requires new substitutes that exhibit mechanical properties similar to the native tissue. Herein, thin saloplastic membranes with tunable physical properties are prepared by complexation of chitosan and alginate solutions containing different concentrations of sodium chloride. Polyelectrolyte complexes (PECs) are transferred to flat Petri dishes for compaction into membrane shapes by sedimentation and solvent evaporation. All membranes are resistant to degradation by lysozyme and are stable in solutions with pH values between 1 and 13. Immersing the different membranes in new doping solutions of increasing salt concentrations triggers the typical saloplastic behavior, with a high water absorption and decrease of the rigidity and ultimate tensile strength. The range of such variations is tuned by the sodium chloride amount used in the synthesis: high salt concentrations increase water uptake and tensile moduli, while decreasing the ultimate strength. Cellular assays demonstrate high proliferation rates and viability of L929 fibroblasts seeded onto the most rigid membranes. The results validate the use of saloplastic membranes as soft tissue substitutes for future biomedical applications.
Resumo:
The authors appreciate the collaboration of the following labs: Civitest for developing DHCC materials, PIEP for conducting VARTM process (Eng. Luis Oliveira) and Department of Civil Engineering of Minho University to perform the tests (Mr. Antonio Matos and Eng. Marco Jorge).
Resumo:
O presente artigo é dedicado à avaliação experimental da eficiência do reforço com fibra de aço em termos da resistência à punção de lajes lisa carregadas simetricamente. Para este fim, oito lajes de 2550 x 2550 x 150 mm3 foram ensaiadas até a ruína, onde se investigou a influência do consumo de fibras (0, 60, 75 e 90 kg/m3) e da resistência do concreto (50 e 70 MPa). Duas lajes de referência, sem fibras, uma para cada classe de resistência do concreto, e uma laje para cada consumo de fibra e para cada classe de resistência do concreto compuseram o programa experimental. Todas as lajes foram armadas à flexão com barras de aço (armadura convencional) de forma a garantir a ruína por punção das lajes de referência. O único reforço transversal foi garantido pelas fibras de aço hooked ends com comprimento e diâmetro de 37 e 0,55 mm, respectivamente, e resistência à tração de aproximadamente 1100 MPa. Os resultados revelaram que as fibras de aço são muito eficientes em converter uma ruína frágil por cisalhamento em uma ruína dúctil por flexão, aprimorando ambos, carga de ruptura e deslocamento. Neste artigo o programa experimental é abordado em detalhe e os principais resultados são apresentados e discutidos.
Resumo:
The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.
Resumo:
The objective of this paper is to propose a simplified analytical approach to predict the flexural behavior of simply supported reinforced-concrete (RC) beams flexurally strengthened with prestressed carbon fiber reinforced polymer (CFRP) reinforcements using either externally bonded reinforcing (EBR) or near surface mounted (NSM) techniques. This design methodology also considers the ultimate flexural capacity of NSM CFRP strengthened beams when concrete cover delamination is the governing failure mode. A moment–curvature (M–χ) relationship formed by three linear branches corresponding to the precracking, postcracking, and postyielding stages is established by considering the four critical M–χ points that characterize the flexural behavior of CFRP strengthened beams. Two additional M–χ points, namely, concrete decompression and steel decompression, are also defined to assess the initial effects of the prestress force applied by the FRP reinforcement. The mid-span deflection of the beams is predicted based on the curvature approach, assuming a linear curvature variation between the critical points along the beam length. The good predictive performance of the analytical model is appraised by simulating the force–deflection response registered in experimental programs composed of RC beams strengthened with prestressed NSM CFRP reinforcements.
Resumo:
Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.
Resumo:
The present paper deals with the experimental assessment of the effectiveness of steel fibre reinforcement in terms of punching resistance of centrically loaded flat slabs, and to the development of an analytical model capable of predicting the punching behaviour of this type of structures. For this purpose, eight slabs of 2550 x 2550 x 150 mm3 dimensions were tested up to failure, by investigating the influence of the content of steel fibres (0, 60, 75 and 90 kg/m3) and concrete strength class (50 and 70 MPa). Two reference slabs without fibre reinforcement, one for each concrete strength class, and one slab for each fibre content and each strength class compose the experimental program. All slabs were flexurally reinforced with a grid of ribbed steel bars in a percentage to assure punching failure mode for the reference slabs. Hooked ends steel fibres provided the unique shear reinforcement. The results have revealed that steel fibres are very effective in converting brittle punching failure into ductile flexural failure, by increasing both the ultimate load and deflection, as long as adequate fibre reinforcement is assured. An analytical model was developed based on the most recent concepts proposed by the fib Mode Code 2010 for predicting the punching resistance of flat slabs and for the characterization of the behaviour of fibre reinforced concrete. The most refined version of this model was capable of predicting the punching resistance of the tested slabs with excellent accuracy and coefficient of variation of about 5%.
Resumo:
The present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the force–deflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending.
Resumo:
In order to investigate the out-of-plane behaviour of masonry infill walls, quasi-static testing was performed on a masonry infill walls built inside a reinforced concrete frame by means of an airbag system to apply the uniform out-of-plane load to each component of the infill. The main advantage of this testing setup is that the out-of-plane loading can be applied more uniformly in the walls, contrarily to point load configuration. The test was performed under displacement control by selecting the mid-point of the infill as control point. Input and output air in the airbag was controlled by using a software to apply a specific displacement in the control point of the infill wall. The effect of the distance between the reaction frame of the airbag and the masonry infill on the effective contact area was previously analysed. Four load cells were attached to the reaction frame to measure the out-of-plane force. The effective contact area of the airbag was calculated by dividing the load measured in load cells by the pressure inside the airbag. When the distance between the reaction walls and the masonry infill wall is smaller, the effective area is closer to the nominal area of the airbag. Deformation and crack patterns of the infill confirm the formation of arching mechanism and two-way bending of the masonry infill. Until collapse of the horizontal interface between infill and upper beam in RC frame, the infill bends in two directions but the failure of that interface which is known as weakest interface due to difficulties in filling the mortar between bricks of last row and upper beam results in the crack opening trough a well-defined path and the consequent collapse of the infill.
Resumo:
Timber frame buildings are well known as an efficient seismic resistant structure and they are used worldwide. Moreover, they have been specifically adopted in codes and regulations during the XVIII and XIX centuries in the Mediterranean area. These structures generally consist of exterior masonry walls with timber elements embedded which tie the walls together and internal walls which have a timber frame with masonry infill and act as shearwalls. In order to preserve these structureswhich characterizemany cities in theworld it is important to better understand their behaviour under seismic actions. Furthermore, historic technologies could be used even in modern constructions to build seismic resistant buildings using more natural materials with lesser costs. Generally, different types of infill could be applied to timber frame walls depending on the country, among which brick masonry, rubble masonry, hay and mud. The focus of this paper is to study the seismic behaviour of the walls considering different types of infill, specifically: masonry infill, lath and plaster and timber frame with no infill. Static cyclic tests have been performed on unreinforced timber frame walls in order to study their seismic capacity in terms of strength, stiffness, ductility and energy dissipation. The tests showed how in the unreinforced condition, the infill is able to guarantee a greater stiffness, ductility and ultimate capacity of the wall.
Resumo:
Dissertação de mestrado em Engenharia de Sistemas
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) – P(VDF-CTFE) membranes are increasingly interesting for a wide range of applications, including battery separators, filtration membranes and biomedical applications. This work reports on the morphology, hydrophobicity, thermal and mechanical properties variation of P(VDF-CTFE) membranes processed by nonsolvent induced phase separation technique (NIPS) as a function of the main processing parameters. All membranes show a porous structure composed of large spherulites, (interconnected) micropores and/or microvoids depending on the processing conditions used that in turn affect their hydrophobicity and mechanical properties. The degree of crystallinity of the membranes remains approximately constant with a value of about 15 %, except for the membranes immediately immersed in ethanol, which is of about 23 %. In turn, the crystalline phases present in the copolymer is mainly affected by the temperature and nonsolvent characteristics of the coagulation bath, the β-phase content ranging from 33 to 100 %, depending on those processing parameters. It was show that the temperature of water-based coagulation bath plays an important role in order to produce structurally uniform and homogeneous porous membranes, which is particularly important from the point of view of technological applications.
Resumo:
The performance of the ATLAS muon trigger system has been evaluated with proton--proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. The performance was primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency is measured for the single-muon trigger for a kinematic region of the transverse momentum pT between 25 and 100 GeV, with a statistical uncertainty of less than 0.01% and a systematic uncertainty of 0.6%. The performance is also compared in detail to the predictions from simulation. The efficiency was measured over a wide pT range (a few GeV to several hundred GeV) by using muons from J/ψ mesons,W bosons, and top and antitop quarks. It showed highly uniform and stable performance.