10 resultados para Tourist Carrying Capacity

em Universidade do Minho


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of novel strengthening techniques to address the seismic vulnerability of masonry elements is gradually leading to simpler, faster and more effective strengthening strategies. In particular, the use of fabric reinforced cementitious matrix systems is considered of great potential, given the increase of ductility achieved with simple and economic strengthening procedures. To assess the effectiveness of these strengthening systems, and considering that the seismic action is involved, one important component of the structural behaviour is the in-plane cyclic response. In this work is discussed the applicability of the diagonal tensile test for the assessment of the cyclic response of strengthened masonry. The results obtained allowed to assess the contribution of the strengthening system to the increase of the load carrying capacity of masonry elements, as well as to evaluate the damage evolution and the stiffness degradation mechanisms developing under cyclic loading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Corrosion of the steel reinforced concrete elements is one of the common pathologies that limits the long-term performance of urban infrastructures. This problem causes the loss of structural serviceability by decreasing the concrete-steel bond strength and reducing the cross section of the reinforcements. The present study introduces a new system for developing free-corrosion resistance prefabricated manhole covers for applications in the aggressive environments, i.e. wastewater collector systems, sewer systems, stormwater systems, etc. Fibre reinforced cement composites were applied in this system in order to suppress the corrodible steel mesh and maintain the structural ductility as well. Application of fibre reinforced polymer (FRP) system is adopted as the additional solution for increasing the load carrying capacity of these elements without concerns about corrosion. The effectiveness of the applied strategy in developing the manhole covers in terms of load carrying capacity and failure mode is evaluated in this research. Furthermore, this paper discusses a FEM-based simulation, aiming to address the possibility of calibrating the constitutive model parameters related to fracture modes I and II.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Degree of Doctor of Philosophy of Structural/Civil Engineering

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors appreciate the collaboration of the following labs: Civitest for developing DHCC materials, PIEP for conducting VARTM process (Eng. Luis Oliveira) and Department of Civil Engineering of Minho University to perform the tests (Mr. Antonio Matos and Eng. Marco Jorge).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timber connections represent the crucial part of a timber structure and a great variability exists in terms of types of connections and mechanisms. Taking as case study the widespread traditional timber frame structures, in particular the Portuguese Pombalino buildings, one of the most common timber connection is the half-lap joint. Connections play a major role in the overall behaviour of a structure, particularly when assessing their seismic response, since damage is concentrated at the connections. For this reason, an experimental campaign was designed and distinct types of tests were carried out on traditional half-lap joints to assess their in-plane response. In particular, pull-out and in-plane cyclic tests were carried out on real scale unreinforced connections. Subsequently, the connections were retrofitted, using strengthening techniques such as self-tapping screws, steel plates and GFRP sheets. The tests chosen were meant to capture the hysteretic behaviour and dissipative capacity of the connections and characterise their response and, therefore, their influence on the seismic response of timber frame walls, particularly concerning their uplifting and rotation capacity, that could lead to rocking in the walls. In this paper, the results of the experimental campaign are presented in terms of hysteretic curves, dissipated energy and equivalent viscous damping ratio. Moreover, recommendations are provided on the most appropriate retrofitting solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores